JAAS

Electronic Supplementary Information (ESI)

New gain calibration protocol for Faraday amplifiers equipped with a $10^{13} \Omega$ resistor

Hisashi Asanuma, ^{a,b+} Kota Yamamoto, ^b Yuta Kemuyama ^b and Takafumi Hirata ^b

- a. Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa-shi, Chiba 277-8564, Japan.
- b. Geochemical Research Center, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japa

Four supplementary tables are included.

Table S1 Analysis solutions used in this study.					
Sample	Element	ng · mL-1	Matrix		
JNdi-1	Nd	200	2 wt% HN		

Sumpre	Liement	ing init	101au11A
JNdi-1	Nd	200	2 wt% HNO ₃
NIST SRM 987	Sr	75	2 wt% HNO3
JMC 475	Hf	150	2 wt% HCl
NIST SRM 3163	W	12	2 wt% HNO3
NIST SRM 981	Pb	100	2 wt% HNO3
NIST SRM 982	Pb	130	2 wt% HNO3

Table S2 Instrumentation and operational settings. Idle time is a settling time between analytical blocks.

		Roundabout calibration	Sr, W, Hf, and Pb isotopic analysis	
Instrument	ICPMS	Neptune XT (Thermo Fisher Scientific, Germany)		
	RF power	12	200 W	
	Cooling gas flow	$15 \text{ L} \cdot \text{min}^{-1}$		
	Auxiliary gas flow	0.75	$L \cdot min^{-1}$	
	Nebuliser gas	1.0-1.1	l L · min⁻¹	
	Sample uptake	110 µ	L · min⁻¹	
	Cone	Nickel stand	lard sample and	
	Cone	high-performance skimmer cones		
	Guard electrode		On	
	Resolving power	Sr, Nd, Hf, and Pb >13,000 W = 2,000		
	Integration time	8.389 s		
	Blank acquisition	one block (27 cycles)	three blocks (27 cycles)	
	Sample acquisition	six blocks (27 cycles)	15 blocks (27 cycles)	
	Idle time	25 s		
티	Mass bias correction	Exponential law		
uctio	Tau correction	Made		
Data red	Uncertainties (s)	Uncertainties (<i>s</i>) is calculated by simple standard deviation of isotopic data obtained from a total of six or 15 block measurements (27 data points per single block).		

Table S3 Gains of $10^{13} \Omega$ amplifiers obtained by a roundabout method. After performing analysis according to configurations 1 to 5, the five gains were evaluated per Faraday amplifier. Errors were based on uncertainties (2*s*) on the isotopic measurements. *G*_{round} was calculated as a weighted mean of the gains of individual Nd isotopic data. except for ¹⁴²Nd/¹⁴⁴Nd isotopic data. MSWD means mean square of the weighted deviates.

23	(2s) on the isotopic measurements. G_{round} was calculated as a weighted mean of the gains of individual Nd isotopic data, except for ¹⁴² Nd/ ¹⁴⁴ Nd isotopic data. MSWD means mean square of the weighted deviates.						
4			Amp 6	Amp 6 Amp 7		Amp 9	
5	1	¹⁴² Nd/ ¹⁴⁴ Nd (2s)	0.00974405 (271)	0.01019874 (116)	0.00981310 (184)	0.00981575 (106)	
6	Eg.	¹⁴³ Nd/ ¹⁴⁴ Nd (2s)	0.00974313 (81)	0.01019826 (156)	0.00981288 (86)	0.00981429 (176)	
7	pai	¹⁴⁵ Nd/144Nd (2s)	0.00974269 (102)	0.01019817 (86)	0.00981261 (193)	0.00981441 (109)	
'	am	¹⁴⁸ Nd/ ¹⁴⁴ Nd (2s)	0.00974324 (101)	0.01019754 (101)	0.00981210 (158)	0.00981300 (148)	
	C	¹⁵⁰ Nd/ ¹⁴⁴ Nd (2s)	0.00974302 (158)	0.01019884 (160)	0.00981198 (244)	0.00981357 (213)	
	7	¹⁴² Nd/ ¹⁴⁴ Nd (2s)	0.00974345 (184)	0.01019924 (132)	0.00981407 (128)	0.00981700 (123)	
	gu	143Nd/144Nd (2s)	0.00974330 (77)	0.01019836 (113)	0.00981281 (105)	0.00981420 (107)	
	pai	¹⁴⁵ Nd/ ¹⁴⁴ Nd (2s)	0.00974326 (109)	0.01019805 (107)	0.00981217 (120)	0.00981370 (111)	
	am	¹⁴⁸ Nd/ ¹⁴⁴ Nd (2s)	0.00974251 (95)	0.01019792 (104)	0.00981170 (154)	0.00981320 (107)	
	Ŭ 15	¹⁵⁰ Nd/ ¹⁴⁴ Nd (2s)	0.00974331 (204)	0.01019808 (216)	0.00981214 (215)	0.00981377 (213)	
8		$G_{\rm round}$ (2SE)	0.00974305 (35)	0.01019808 (40)	0.00981248 (47)	0.00981380 (46)	
		MSWD	0.38	0.35	0.44	0.66	

Table S4 Gain (G_{ccc}) obtained using a 3.3 pA constant current generator.

Amp 2 $(10^{11}\Omega)$	Amp 3 $(10^{11}\Omega)$	Amp 4 $(10^{11} \Omega)$	Amp 5 $(10^{11} \Omega)$	Amp 6 (10 ¹³ Ω)	Amp 7 (10 ¹³ Ω)	Amp 8 (10 ¹³ Ω)	Amp 9 ($10^{13}\Omega$)
0.979419	0.982994	0.979888	0.983465	0.00974067	0.01019553	0.00981356	0.00981653
0.979406	0.982989	0.979868	0.983455	0.00974068	0.01019559	0.00981365	0.00981629
0.979416	0.982994	0.979894	0.983470	0.00974088	0.01019574	0.00981356	0.00981637
0.979406	0.983000	0.979887	0.983457	0.00974081	0.01019573	0.00981342	0.00981651
0.979415	0.983004	0.979886	0.983460	0.00974074	0.01019561	0.00981319	0.00981639
Mean (2s)	Mean $(2s)$	Mean $(2s)$	Mean (2s)	Mean (2s)	Mean (2s)	Mean (2s)	Mean (2s)
0.979413 (12)	0.982996 (12)	0.979884 (19)	0.983461 (12)	0.00974076 (18)	0.01019564 (18)	0.00981347 (36)	0.00981642 (20)