Supporting Information

Freestanding bilayered vanadium oxide films synthesized by facile, liquid exfoliation of chemically preintercalated δ-Li_xV₂O₅·*n*H₂O

Luke Houseman^a, Santanu Mukherjee^a, Ryan Andris^a, Michael Zachman^b, Ekaterina Pomerantseva^a

^a Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA

^b Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

* Corresponding author: <u>ep423@drexel.edu</u>

Keywords: liquid exfoliation; bilayered vanadium oxide; nanoflakes; freestanding film; electronic conductivity

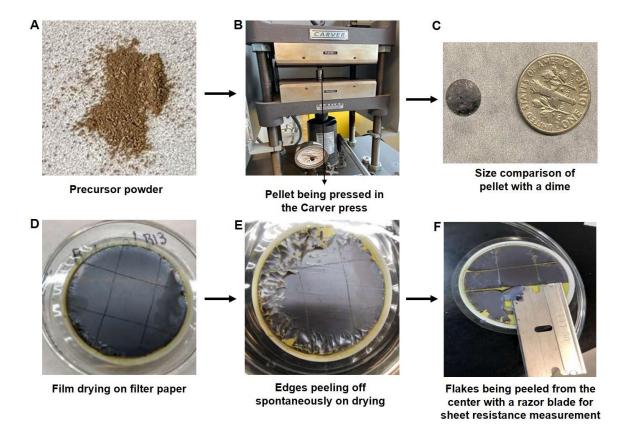


Figure S1. Sample preparation process for sheet resistance measurement of (A-C) precursor powder and (D-F) freestanding film. (A) Yellowish brown δ -Li_xV₂O₅·*n*H₂O powder, (B) 10 mg of powder filled in the cavity of steel die and pressed at ~ 10,000 kPa for 10-15 seconds, (C) Dark colored, circular pellet obtained, placed beside a dime for size comparison, (D) Dark colored film in the process of drying, (E) Dried film, demonstrating a deep brownish color, and flakes peeling off from the sides, (F) Flakes being gently removed with a razor blade for conductivity measurements.

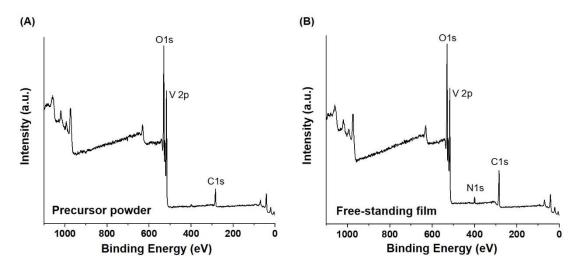
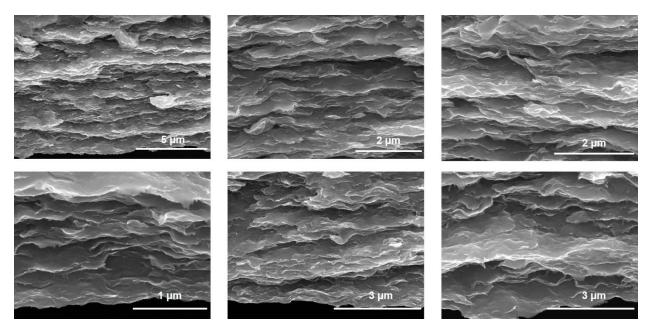



Figure S2. XPS survey scans of the (a) precursor powder and (b) free-standing film.

Figure S3. Additional cross-sectional SEM images of the freestanding film produced by exfoliation of δ -Li_xV₂O₅·*n*H₂O precursor powder followed by vacuum filtration.