Electronic Supplementary Information for

Self-Healing Polymer-Clay Hybrids by Facile Complexation of a Waterborne Polymer with a Clay

Aranee (Pleng) Teepakakorn¹, Makoto Ogawa^{2*}

1. School of Molecular Science and Engineering, 2. School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand

*E-mail: makoto.ogawa@vistec.ac.th.

List of content

Figure S1. XRD patterns of 4 PVA-SWF (a,b) and 5 PVA-SWF (c,d) films before (black) and after (red) the soaking in water for 24 h.

Figure S2. Microscopy images of re-healing 1.80 PVA-SWF film for 10 times by immersion in water for 1 min.

Figure S3. Microscopy images of the engraved 1.80 PVA-SWF films with the thickness of 2 μ m (top) and 1 μ m (bottom) before and after immersion in water for 30 min and 24h, respectively.

Figure S4. Photographs of 1.80 PVA-SWF coated on hook; as prepared (A,D), attachment on the glass (B) and frosted glass (E) with hanging 500 g of iron balls, pull out the hook from the glass (C) and frosted glass (F)

Figure S5. Temporal evolution of the depth along the length of the defect in the 1.80 PVA-SWF films before (black) and after (red) attachment on the frosted glass

Figure S6. Temporal evolution of the depth along the length of the engraved 0.36 (A), 1.08 (B), 1.80 (C), 4 (D) and 5 (E) PVA-SWF films

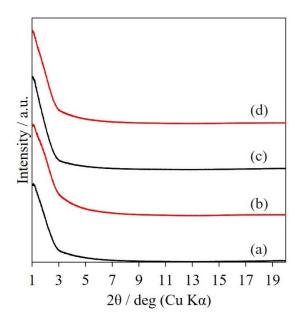

Figure S7. SEM image of a synthetic hectorite (Sumecton SWF) with the magnification of 50k.

Figure S8. Schematic illustration and photographs showing the dimension of specimen for the "shear lap test".

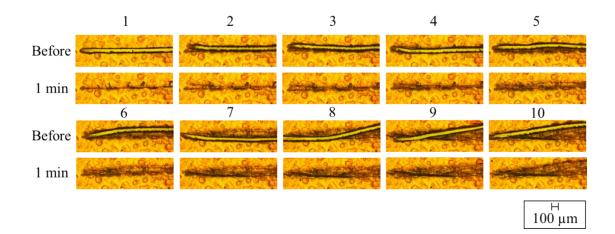
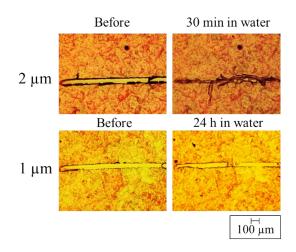
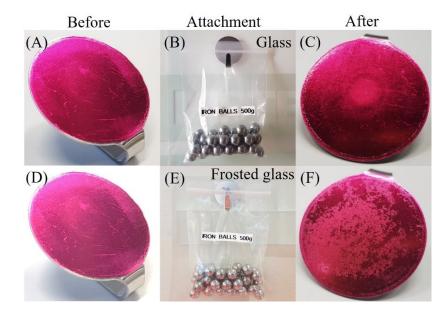
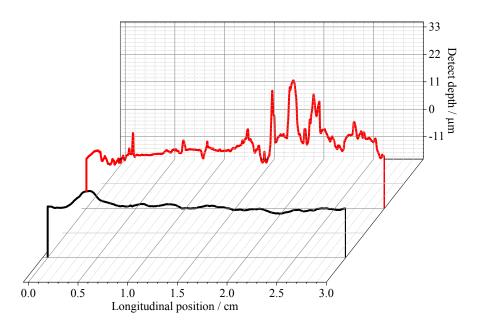

Figure S9. Relationship between the shear load and the displacement of 0.36 (red) and 1.80 (black) PVA-SWF films.

Table S1. Weights of the films before and after the soaking in water for 24 h


- Video S1. Attachment the hook on the glass window
- Video S2. Attachment the hook on the frosted glass window
- Video S3. Pull out the hook from the glass window
- Video S4. Pull out the hook from the frosted glass window


Figure S1. XRD patterns of 4 PVA-SWF (a,b) and 5 PVA-SWF (c,d) films before (black) and after (red) the soaking in water for 24 h.


Figure S2. Microscopy images of re-healing 1.80 PVA-SWF film for 10 times by immersion in water for 1 min.

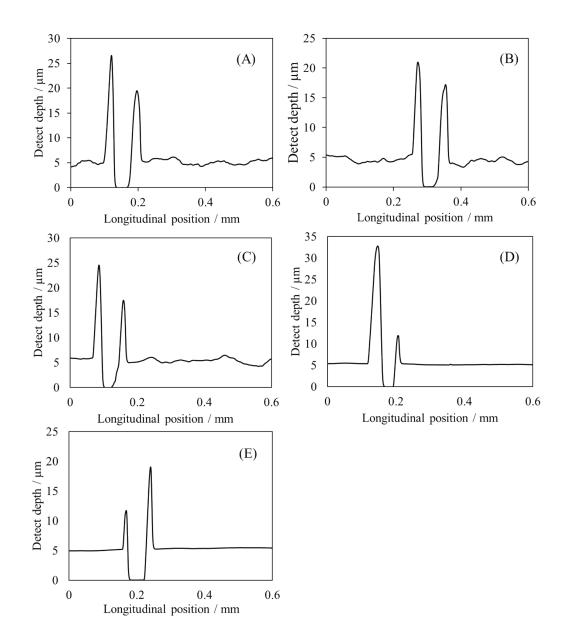

Figure S3. Microscopy images of the engraved 1.80 PVA-SWF films with the thickness of 2 μ m (top) and 1 μ m (bottom) before and after immersion in water for 30 min and 24h, respectively.

Figure S4. Photographs of 1.80 PVA-SWF coated on hook; as prepared (A,D), attachment on the glass (B) and frosted glass (E) with hanging 500 g of iron balls, pull out the hook from the glass (C) and frosted glass (F)

Figure S5. Temporal evolution of the depth along the length of the defect in the 1.80 PVA-SWF films before (black) and after (red) attachment on the frosted glass

Figure S6. Temporal evolution of the depth along the length of the engraved 0.36 (A), 1.08 (B), 1.80 (C), 4 (D) and 5 (E) PVA-SWF films

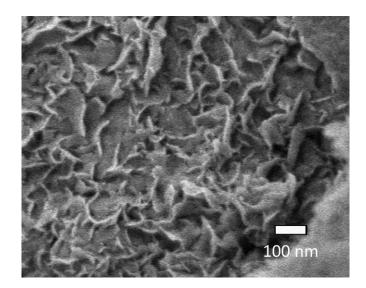
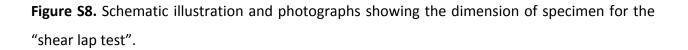
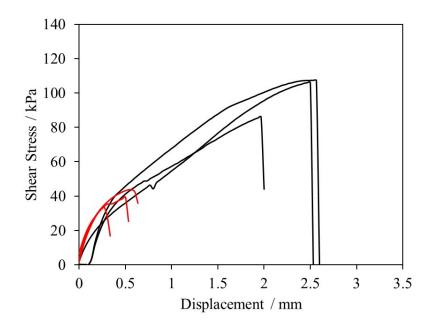




Figure S7. SEM image of a synthetic hectorite (Sumecton SWF) with the magnification of 50k.

Figure S9. Relationship between the shear load and the displacement of 0.36 (black) and 1.80 (red) PVA-SWF films.

Table S1 Weights of the films before and after the soaking in water for 24 h

Weight of film (mg)	SWF	PVA-SWF weight ratio					PVA
		0.36	1.08	1.80	4	5	
Before	777.8	759.7	782.9	767.8	735.8	731.6	770.9
After	773.6	759.7	782.8	767.8	735.2	730.8	768.4