Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Elucidating zinc-ion battery mechanisms in freestanding carbon electrode architectures decorated with nanocrystalline ZnMn₂O₄

Megan B. Sassin,^{a,*} Maya E. Helms,^a Joseph F. Parker,^a Christopher N. Chervin,^a Jesse S. Ko,^b Debra R. Rolison,^a and Jeffrey W. Long^{a,*}

^aCode 6170, Surface Chemistry Branch, U.S. Naval Research Laboratory, Washington, DC USA 20375

^bFormer NRC Postdoctoral Associate at the U.S. Naval Research Laboratory. Present address: Applied Physics Laboratory, Baltimore, MD USA

 Table S1. Elemental Analysis of ZnMn₂O₄@CNF.

Element	Method ^a	Result
Carbon	GLI Procedure ME-14	36.41%
Manganese	GLI Procedure ME-70	26.5%
Sodium	GLI Procedure ME-70	0.0479%
Zinc	GLI Procedure ME-70	11.2%

^a analysed using Galbraith Laboratories protocols

Calculation of wt. % ZnMn₂O₄ in CNF from elemental analysis: $\frac{0.112g Zn}{1g sample} * \frac{1mol Zn}{65.38g} * \frac{2mol Mn}{1mol Zn} * \frac{54.94g}{1mol Mn} = \frac{0.188g Mn}{1g sample} = 18.8\% Mn$ $\frac{0.112g Zn}{1g sample} * \frac{1mol Zn}{65.38g} * \frac{4 mol O}{1mol Zn} * \frac{16 g}{1mol O} = \frac{0.110 g O}{1g sample} = 11\% O$

 \rightarrow 18.8% Mn + 11.2% Zn + 11% O = 41 wt.% ZnMn₂O₄@CNF^{*}

*Based on the assumption that all zinc in the sample exists in the form of $ZnMn_2O_4$, as no other crystalline phase is observed via X-ray diffraction

Eqn S1: %Mn unassociated with ZnMn₂O₄

= 26.5 % Mn measured – 18.8 % Mn associated with $ZnMn_2O_4 = 7.7$ %

Eqn S2: % of Zn in pores for reaction

Moles Zn²⁺ required for reaction:

 $\frac{224 \ mA \ h}{g_{Total}} * \frac{0.01 \ g_{Total}}{electrode} * \frac{1 \ A}{1000 \ mA} * \frac{3600 \ s}{1 \ h} * \frac{1 \ mol \ e^-}{96485 \ C} * \frac{0.5 \ mol \ Zn^{2 \ +}}{1 \ mol \ e^-} = 4.2 \ \times \ 10^{-5}$

Moles Zn²⁺ inside pores:

 $\frac{0.44 \ cm^3}{g_{Total}} * \frac{0.01 \ g_{Total}}{electrode} = 0.0044 \ cm^3 = 4.4 \ \times \ 10^{-6} \ L * \frac{1 \ mol \ ZnSO4}{L} = 4.4 \ \times \ 10^{-6}$

% of required Zn²⁺ inside pores

 $\frac{4.4 \times 10^{-6} \, mol \, Zn^{2+} \, inside \, pores}{4.2 \times 10^{-5} \, mol \, Zn^{2+} \, required} * 100 = 10.5 \,\%$

Eqn. S3: Concentration of dissolved Mn²⁺ inside pores

41 wt. % ZnMn₂O₄ in the electrode Electrode mass: 0.01 g *Pore volume:* 0.0044 $cm^3 = 4.4 \times 10^{-6} L$

% of electrode area internally

Geometric area of electrode: 0.000127 m² Specific surface area of electrode: 260 m² g⁻¹ * 0.01 g = 2.6 m²

$$\frac{2.6 m^2 - 0.000127 m^2}{2.6 m^2} * 100 = 99\%$$

Since 99% of the surface area is expressed internally, essentially all of the ZnMn₂O₄ mass exists in the interior of the electrode, so if all of the ZnMn₂O₄ dissolved, the [Mn²⁺] dissolved inside pores would be:

 $\frac{0.41 \ g \ ZnMn_2O_4}{1 \ g_{Total}} * \frac{0.01 \ g_{Total}}{electrode} * \frac{1 \ mol \ ZnMn_2O_4}{239.25 \ g} * \frac{2 \ mol \ Mn}{1 \ mol \ ZnMn_2O_4} * \frac{pore \ vol}{4.4 \ \times \ 10^{-6} \ L} = 7 \ M \ Mn$

Fig. S1 X-ray photoelectron spectra of (a) Zn 2p, (b) Mn 2p, and (c) O 1s of uncycled $ZnMn_2O_4@CNF$ paper.

Fig. S2 Nyquist plot of $ZnMn_2O_4$ @CNF after conditioning at 1.75 V for 30 min after a voltage step from open-circuit voltage in 1 M ZnSO₄.

Fig. S3 Energy-dispersive X-ray spectra for the (left) exterior and (right) interior surfaces of (bottom row) uncycled $ZnMn_2O_4@CNF$ and (top row) after conditioning at 1.75 V for 30 min after scanning directly from OCV).

Fig. S4 X-ray diffraction patterns of uncycled $ZnMn_2O_4@CNF$ and after conditioning at 1.75 V for 30 min directly from OCV.

Fig. S5 Scanning electron micrographs of the exterior surface of $ZnMn_2O_4$ @CNFs after conditioning at specified voltages for 30 min in 1 M $ZnSO_4$.

Fig. S6 Energy-dispersive X-ray spectra of the exterior (left) and interior (right) surfaces of $ZnMn_2O_4@CNF$ as a function of applied voltage in 1 M $ZnSO_4$.

Fig. S7 Schematic of the 3D multifunctional electrode architecture.

Fig. S8 Optical image of 1 M $ZnSO_4$ after soaking $ZnMn_2O_4$ @CNF for 13 days (left) and after adding excess potassium periodate (right). The magenta hue arises from the presence of Mn^{7+} generated from the oxidation of soluble Mn^{2+} by KIO₄.