Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Fluorescence Turn-off Mechanism of Norbornene Derived Homopolymer - An Al³⁺ Colorimetric and Fluorescent Chemosensor Trong-Nghia Le,[†], Kuan-Yu Lin,[†] Anusha Valaboju, Cheng-Kang Lee, Jyh-Chiang Jiang* and N.Vijayakameswara Rao* Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan. [†] These authors contributed equally to this work. *Corresponding author: Jyh-Chiang Jiang, e-mail: jcjiang@mail.ntust.edu.tw Vijayakameswara Rao, e-mail: vijayrao@mail.ntust.edu.tw **List of Figures** Figure S6. FTIR spectra of PNDMIP-DASA 24k, 39k and 56k......7 Figure S7. Change in fluorescence spectra of NDMIP-DASA (a), PNDMIP-DASA 24k (b), 39k (c), 56k (d) in THF:DIW (2:8) (6.5 ppm) upon gradual addition of Al^{3+} ion. Figure S8. Job's plot for stoichiometry of NDMIP-DASA (a) and PNDMIP-DASA (b) Figure S9. The pH effect on absorption ($\lambda = 511$ nm) of NDMIP-DASA (a) and

List of Tables

Table S1. The benchmark calculations of adsorption maximum for the sensor M, whichconsidered different DFT functionals such as B3LYP, CAM-B3LYP, M062X, ω B97XD, and PBE0 with and without THF solvent.8Table S2. Table comprising molecular weight and PDI of PNDMIP-DASA by GPC.9Table S3. Limit of detection (LOD) of NDMIP-DASA and PNDMIP-DASA byUV/Vis and fluorescence spectroscopy11Table S4. The dominant structure parameters of sensor M and the complex M-Al³⁺ inthe ground state and excited state (*)12Table S5. The dominant structure parameters of sensor D and the complex D-Al³⁺ inthe ground state and excited state (*)13Table S6. Comparison of NDMIP-DASA and PNDMIP-DASA with previous reportson Al³⁺ sensors in literature.

Figure S1. ¹H NMR spectra of NDMIP in CDCl₃

Figure S2. FTIR spectra of NDMIP and NDMIP-DASA

Figure S3. ¹H NMR spectra of PNDMIP in DMSO-*d*₆

Figure S4. FTIR spectra of PNDMIP

Figure S5. ¹H NMR of NDMIP-DASA in CDCl₃

Figure S6. FTIR spectra of PNDMIP-DASA 24k, 39k and 56k.

Table S1. The benchmark calculations of adsorption maximum for the sensor **M**, which considered different DFT functionals such as B3LYP, CAM-B3LYP, M062X, ω B97XD, and PBE0 with and without THF solvent.

Basis Set	CAM-B3LYP	CAM-B3LYP (Solv.)	wB97	wB97 (Solv.)	B3LYP	B3LYP (Solv.)	M062X	M062X (Solv.)	Exp. Value
6-31G(d)	319.43	326.52	294.74	300.98	403.3	408.21	321.9	329.12	422

Homonolymor	MW	Polydispersity		
nomopolymer	(Da)			
PNDMIP-DASA 24k	24039	1.04		
PNDMIP-DASA 39k	38964	1.02		
PNDMIP-DASA 56k	56549	1.13		

Table S2. Table comprising molecular weight and PDI of PNDMIP-DASA by GPC.

Figure S7. Change in fluorescence spectra of NDMIP-DASA (a), PNDMIP-DASA 24k (b), 39k (c), 56k (d) in THF:DIW (2:8) (6.5 ppm) upon gradual addition of Al³⁺ ion.

Limit of detection (LOD)

Based on the colorimetric and fluorescence titration, the detection limit (LOD) was calculated using the following equation:

$$LOD = \frac{3\sigma}{k}$$

Where σ represents the standard deviation of blank samples, and k represents the slope between the absorption intensity ratio (A_{511 nm}/A_{422 nm}) or emission intensity versus the Al³⁺ concentration. (*J. Mater. Chem. B*, **2020**; 8(16):3557-3565; *Sens. Actuators B Chem.* **2015**; 208:75-84)

 Table S3. Limit of detection (LOD) of NDMIP-DASA and PNDMIP-DASA by UV/Vis and fluorescence spectroscopy

Sensors	LOD by UV/Vis spectroscopy (nM)	LOD by fluorescence spectroscopy (nM)
NDMIP-DASA	70.82	27.60
PNDMIP-DASA 24k	56.89	16.13
PNDMIP-DASA 39k	15.69	7.44
PNDMIP-DASA 56k	47.74	2.94

	Coordination Number	Dihedral	angle (°)	Bon			
	Coordination Number	D_1	D_2	d _{Al-O1}	d _{Al-O2}	d _{Al-O3}	d _{Al-N}
М	-	29.33	29.21				
M*	-	24.71	11.71				
M-Al ³⁺	4	0.40	0.05	1.82	1.77	1.72	1.91
M-Al ³⁺ *	4	1.90	0.16	1.81	1.77	1.72	1.92

Table S4. The dominant structure parameters of sensor M and the complex $M-Al^{3+}$ in the ground state and excited state (*)

	Coordination Number	Dihedral angle (°)			Bond length (Å)						
		D ₁	D ₂	D ₃	D ₄	<i>d</i> _{<i>Al-0</i>1}	<i>d</i> _{<i>Al-02</i>}	<i>d</i> _{<i>Al</i>-03}	<i>d</i> _{<i>Al</i>-04}	d_{Al-N5}	d_{Al-N18}
D	-	129.77	46.84	-32.2	-151.50						
D*	-	130.31	43.00	-24.67	-167.71						
D-Al ³⁺	6	-6.99	150.43	-151.15	153.37	1.85	1.91	1.85	2.06	1.98	2.03
D-A1 ³⁺ *	6	-8.7	151.16	-171.1	153.42	1.91	1.84	1.97	1.87	1.99	2.04

Table S5. The dominant structure parameters of sensor **D** and the complex $D-Al^{3+}$ in the ground state and excited state (*)

Figure S8. Job's plot for stoichiometry of NDMIP-DASA (a) and PNDMIP-DASA (b) with Al³⁺ by UV/Vis spectroscopy.

Figure S9. The pH effect on absorption ($\lambda = 511$ nm) of NDMIP-DASA (a) and PNDMIP-DASA (b) in the presence of Al³⁺ (10 μ M).

Туре	Probes	Solvent system	Limit of detection (M)	References	
Polymer	PNDMIP-DASA	THF/ Water (2:8, v/v)	2.94×10 ⁻⁹	This work	
	PEGSB	Water	1.32×10^{-8}	Tetrahedron, 2021, 79, 131888.	
	mPEG-Dye– Biotin	Water	2.02×10 ⁻⁸	<i>J. Mater. Chem. B,</i> 2020 ,8, 3557-3565	
	PEGBAB	Water	4.05×10^{-9}	Polymers, 2019, 11, 573	
	Zn(DMA)(TBA)	Water	1.97×10^{-6}	<i>Inorg. Chem. Front.,</i> 2017 ,4, 1888-1894	
	NDMIP-DASA	THF/ Water (2:8, v/v)	2.76×10 ⁻⁸	This work	
	ZXQ	MeCN/Water (95:5, v/v)	-	<i>Inorg. Chem. Commun.</i> , 2020 , 108168	
	NDHIPH	HEPES/DMSO	2.53×10-9	<i>ACS Omega</i> 2019 , 4, 18520–18529	
Small molecule probes	BPD	Britton- Robinson buffer	$2.65 imes 10^{-8}$	Sens. Actuators B Chem. 2019, 294, 14–23	
	A, B and C	ACN/ Water	1.03×10 ⁻⁷ , 3.17×10 ⁻⁷ , 9.1×10 ⁻⁸	<i>Mater. Chem. Phys.,</i> 2019 , 233, 89–101	
	DFSB	EtOH/ Water	3.7× 10 ⁻⁸	<i>RSC Adv.</i> , 2018 , 8, 31889–31894	
	H ₂ VM	HEPES	11.34 × 10 ⁻⁹	<i>Dalton Trans.</i> , 2018, 47, 15907– 15916	

Table S6. Comparison of NDMIP-DASA and PNDMIP-DASA with previous reports on Al³⁺ sensors in literature.