Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Structural characterization:

The phase structure and crystallinity of the prepared catalysts were observed by Powdered X-ray diffraction (XRD) analysis. The Powdered X-ray diffraction were recorded on a Bruker AXS diffractometer (D8 advance) at a generator voltage of 40kv and 30 mA current using cu-K α . radiation (λ =1.5406 Å). The samples were scanned in the range of (2 θ =5-100) with the scan rate 1s/step. Field emission scanning electron microscopic (FESEM) characterization was done on FEI Nova Nano SEM-450. Transmission electron Microscopy (TEM) image of the representative TNR sample was obtained by using a JEOL 2010EX TEM instrument equipped with the high resolution objective -lens pole piece at an acceleration voltage of 200Kv fitted with a CCD camera. The optical properties were characterized by using UV-vis diffuse reflectance spectroscopy (DRS) Perkin Elmer Lambda 750) equipped with an integral sphere using BaSO₄ as a reference. Fourier transmission infrared spectroscopy were carried by FTIR-6800 is JASCO Europe Italy. Photo electro chemical properties were carried by CH instrument model CHI660C, Shanghai Chenhua Device Company, Time -Resolved Electrochemical instrument using a 450 W xenon arc lamp (Newport, USA). GC analysis was performed by gas chromatograph TCD detector (Perkin Elmer Clarus 590 GC containing molecular Sieve/5Å column) using nitrogen (N_2) as carrier gas.

Platinization Calculation:

 $0.25 \text{ mL of } H_2PtCl_6 \text{ from } 8wt \%$ aqueous solution:

Density =mass/volume (d=m/v)

V=m/d

Mass of H_2 PtCl₆ =100g(given)

Density of 1w%=1.05g/cm³

V=100/1.05

1g of TiO₂ (1w%) is taken 10 mg,

1w% of platinum M. Wt is 195.084 g in H₂PtCl₆, M. Wt is 409.81g/mol therefore 10mg platinum =409.81x10/195.084

=21.0068mg is required for 10mg of platinum.

=95.23 cm³ this is only 1 w% of H₂PtCl₆.

 $\frac{95.23x21.0068}{8x1000}$

=0.25ml platinum from 8w% of H₂PtCl_{6.}

Figure S1. ¹H NMR spectrum (500 MHz, $CDCl_3 + C_5D_5N$) of LG22.

Figure S2. MALDI-TOF of LG22.

Figure S3. ¹H NMR spectrum (500 MHz, CDCl3+ C5D5N) of LG23.

Figure S4. MALDI-TOF of LG23

Figure S5: (a) UV-vis absorption spectra of LG-22, LG-23, UV-vis DRS of (b) cTiO₂ and Pt/TiO₂ (c) PCT-LG-22, PCT-LG-23, Tauc Plot of (d) cTiO₂, Pt/TiO₂, (e) Photoluminescence of PCT-LG-22, PCT-LG-23.

Figure. S6: FTIR analysis of (a) LG-22 and LG-23 dyes, and (b) cTiO₂, Pt/TiO₂, PCT-LG-22 and PCT-LG-23.

Figure. S7: Time Course for the photocatalytic hydrogen generation.

Photocatalytic Water Splitting Reaction: Hydrogen production calculation

Therefore, the TON can be calculated according to equation (1).

$$TON = \frac{\text{Number of dye molecules adsorbed}}{2*\text{number of evolvedH2 molecules}}$$
(1)

The apparent quantum yields (AQY) are calculated according to the following equation (2).

$$AQY(\%) = \frac{H2 \text{ molecules of evolved } *2}{incident \ photons} (or) \frac{2X \text{ Rate}}{N} x100 \quad (2)$$

Standard area of pure hydrogen gas $(H_2) = 3039348.66 \times mL$

In atmospheric condition at normal temperature pressure (NTP)=22.4 mL

1m.mol=22.4 mL

0.1 mL (or) 1 m.ml Standard area of pure hydrogen gas (H₂) = 3039348.66 mL

$$? = x mL$$

= $\frac{0.1ml \times X}{3039348.60 * 22.4} = 1.4688 \times 10^{-9} m.ml \times X$

75 mL pyrex glass contaning empty space=55 mL due to 20 mL calalytic solution

$$1.4688 \times 10^{-9} \text{m.ml} \times \text{X=1 mL}$$

$$?=0.1 \text{m}^{L}$$

$$1.4688 \times 10^{-9} \text{m.ml}/0.1 \text{mL}/1 \text{mL}$$

$$=1.4688 \times 10^{-8} \times \text{X}$$

$$= 1.4688 \times 10^{-5} \text{X m.ml}$$

$$= 0.014688 \times 10^{-3} \times \text{X } \mu.\text{ml}$$

$$10 \text{ mg of catalyst=}0.014688 \times 10^{-3} \times \text{X } \mu.\text{ml}$$

$$55 \text{ml empty space=?}$$

$$H2 = \frac{0.014688 \times 10 - 3 \times 55 \mu.\text{ml}}{10 \text{ mg}}$$

$$= \frac{0.014688 \times 10 - 3 \times 55 \mu.\text{ml} \text{X1000}}{10 \text{ mg}}$$

$$= 0.08078 \mu.\text{ml}/\text{g}_{\text{X}} \text{X}$$

Calculation of Number of incident proton 'N'

$$N = \frac{E\lambda}{hc}$$

E = Nhv (according to plank equation)
$$V = \frac{c}{\lambda}$$

E = Nh $\overline{\lambda}$

E=Incident light of radiation E= 2.75x10⁻³joule λ =wave length of light(420nm) h = plank constant (6.626x10⁻³⁴js) or 6.626x10⁻²⁷ erg-s c=speed of light(3x10⁸m/s) or 3x10¹⁰ cm/s Surface area of reactor=6.5cm² Irradiation time=4hours $\frac{2.75x10 - 3 j X 420x10 - 9m X 6.5m2X4 X3600s}{6.626x10 - 34js X 3x108}$ N= m/s N=2.75x10⁻³ j x420x10⁻⁷ cm x6.5cm²x4x3600s 6.626x10⁻³⁴ j-s x3x10¹⁰ cm/s

N=5.43x10¹³

Table S1: Comparison of photocatalytic hydrogen generation efficiency of different reported

 photosensitizers

Sl. No	Photocataly	Light	pН	SED	H ₂ Yield	TON	AQY	Reference
	st	Source					(%)	
1	Zn-	300W Xe	-	TEOA	43 µmol	-	7.36	1
	CoDETPP	lamp			h^{-1}			
2	[ZnTMPyP] ⁴	300W Xe	7		2560	-	15.2	2
	+	lamp			µmol h⁻			
	MoS ₂ /RGO				${}^{1} g^{-1}$			
3	ZnTCPP-	300W	8	TEOA	10.2	261	-	3
	MoS ₂ /TiO ₂	Xeon-lamp						
		equipped						
		with a cut-						
		off filter						
		(λ>420						
		nm).						
4	YD2-0-C8	LED	4	Ascorbic	47700	2370	1.22	4
				Acid	μmol			
					$g^{-1} h^{-1}$			
5	PdTAPP-	300 W Xe		sodium	30880	-	0.75	5
	TFPT	lamp		ascorbate	µmol g ⁻¹			
6	Pt/THPP-Zn-	300W Xe	-	TEOA	1239.8	-	-	6
	TiO ₂	Lamp			μmol			

					g ⁻¹ h ⁻¹			
7	ZnCoDETPP	300W Xe Lamp	-	TEOA	43 µmol h ⁻¹	-	7.36	7
8	2%NP/g -	300W Xe		TEOA	2297	15	-	8
	C_3N_4	Lamp	-		µmol g – 1 h – 1			
8	PHPT-LG5	450W	7	TEOA	4196	8392	7.43	9
		Xe -lamp			$\mu mol g^{-1}$			
9	PCT-LG-	450W	7	TEOA	6641	13282	61.13	10
	DtT	Xe -lamp			$ \begin{array}{c c} \mu mol \ g^{-1} \\ h^{-1} \end{array} $			
10	PCT-LG-tT	450W	7	TEOA	7396	14792	54.89	10
		Xe -lamp			μ mol g ⁻¹			
					h ⁻¹			
11	PCT-LG-22	Xenon- 300W	12	TEOA	8,850.9	11,801.2	15.67	This work
		Lamp						
12	PCT-LG-23	Xenon-	3	TEOA	9,793.5	13,058	17.34	This
		300W						work
		Lamp						

References:

- Chen, Z.; Wang, J.; Zhang, S.; Zhang, Y.; Zhang, J.; Li, R.; Peng, T. Porphyrin-Based Conjugated Polymers as Intrinsic Semiconducting Photocatalysts for Robust H₂ Generation under Visible Light. ACS Appl. Energy Mater. 2019, 2, 5665-5676.
- Yuan, Y. J.; Chen, D.; Zhong, J.; Yang, L. X.; Wang, J. J.; Yu, Z. T.; Zou, Z. G. Construction of a Noble-Metal-Free Photocatalytic H₂ Evolution System using MoS₂/Reduced Graphene Oxide Catalyst and Zin-Porphyrin Photosensitizer. J. Phys. Chem. C. 2017, 121, 24452-24462.
- Yuan, Y.; Lu, H.; Ji, Z.; Zhong, J.; Ding, M.; Chen, D.; Li, Y.; Tu, W.; Cao, D.; Yu, Z.; Zou, Z. Enhanced visible-light-induced hydrogen evolution from water in a noble-metal-free system catalyzed by ZnTCPP-MoS₂/TiO₂ assembly, *Chemical Engineering Journal*, 2015, 275, 8-16.
- Ho, P. Y.; Mark, M. F.; Wang, Y.; Yiu, S. C.; Yu, W. H.; Ho, C. L.; McCamant, D. W.; Eisenberg, R.; Huang, S. Panchromatic Sensitization Using Zn(II) Porphyrin-Based Photosensitizers for Light-Driven Hydrogen Production in Water. *ChemSuSChem*, 2018, 11, 2517-2528.

- Liao, P.; Hu, Y.; Liang, Z.; Zhang, J.; Yang, H.; He, L. Q.; Tong, Y, X.; Liu, J. M.; Chen, L.; Su, C. Y. Porphyrin-based imine gels for enhanced visible-light photocatalytic hydrogen production. *J. Mater. Chem. A*, **2018**, *6*, 3195-3201.
- Huang, L. Y.; Huang, J. F.; Lei, Y.; Qin, S.; Liu, J. M. Porous Hybrid materials based on Mesotetrakis(Hydroxyphenyl) Porphyrins and TiO₂ for efficient Visible-Light-Driven hydrogen production. *Catalysts*, **2020**, *10*, 656.
- Chen, Z.; Wang, J.; Zhang, S.; Zhang, Y.; Zhang, J.; Li, R.; Peng, T. Porphyrin-Based Conjugated Polymers as Intrinsic Semiconducting Photocatalysts for Robust H₂ Generation under Visible Light, ACS Applied Energy Materials 2019, 2, 5665-5676.
- Li, L.; Bodedla, G. B.; Liu, Z.; Zhu, X. Naphthalimide-porphyrin hybridized graphitic carbon nitride for enhanced photocatalytic hydrogen production, *Applied surface sciences*, 2020, 499, 143755.
- Gonuguntla, S.; Tiwari, A.; Madanaboina, S.; Lingamallu, G.; Pal, U. Revealing high hydrogen evolution activity in zinc porphyrin sensitized hierarchical porous TiO₂ photocatalysts. *International Journal of hydrogen energy*, **2020**, *45*, 7508-7516.
- Gangadhar, P. S.; Gonuguntla, S.; Madanaboina, S.; Islavath, N.; Pal, U.; Giribabu, L. Unravelling the impact of thiophene auxiliary in new porphyrin sensitizers for high solar energy conversion. *Journal of Photochemistry and Photobiology A: Chemistry*, 2020, 392, 112408.