Supplementary information

Evaluating the effect of synthesis, isolation, and characterisation variables on reported particle size and dispersity of drug loaded PLGA nanoparticles

Bruna C. Garms^{1,4,†}, Hamish Poli^{1,†}, Darcy Baggley¹, Felicity Y. Han^{2,3}, Andrew K. Whittaker^{3,4}, Anitha A^{1,*}, Lisbeth Grøndahl^{1,3,*}

1. School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia.

2. School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.

3. Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia.

4. ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, QLD 4072, Australia.

*Correspondence: <u>l.grondahl@uq.edu.au</u> (L.G.); <u>a.sudheeshkumar@uq.edu.au</u> (A.A.)

† These authors contributed equally to this work.

Figure S1: Study of 2Rs of PLGA NPs. (A) Repeatability of PLGA-E1-PVA-S NPs in z-average, n = 8 (A), and (B) replicability of PLGA-A1-PVA-S NPs. The number weighted mean is represented by columns () and z-average is represented by •.

Number mean (nm)	Z-average (nm)	PDI
144 ± 8	186 ± 5	0.12 ± 0.01
77 ± 10	137 ± 8	0.23 ± 0.01
73 ± 31	109 ± 20	0.14 ± 0.02
74 ± 24	103 ± 19	0.14 ± 0.01
54 ± 6	88 ± 9	0.15 ± 0.02
121 ± 27	197 ± 41	0.24 ± 0.11
140 ± 22	172 ± 15	0.09 ± 0.01
157 ± 19	225 ± 25	0.17 ± 0.05
177 ± 19	258 ± 5	0.19 ± 0.02
149 ± 3	317 ± 59	0.11 ± 0.02
139 ± 1	176 ± 2	0.08 ± 0.02
169 ± 7	205 ± 18	0.11 ± 0.01
139 ± 19	215 ± 32	0.17 ± 0.05
171 ± 15	237 ± 19	0.23 ± 0.09
136 ± 18	175 ± 8	0.16 ± 0.07
124 ± 15	173 ± 10	0.21 ± 0.06
142 ± 16	171 ± 10	0.07 ± 0.03
141 ± 12	171 ± 11	0.06 ± 0.02
	Number mean (nm) 144 ± 8 77 ± 10 73 ± 31 74 ± 24 54 ± 6 121 ± 27 140 ± 22 157 ± 19 177 ± 19 149 ± 3 139 ± 1 169 ± 7 139 ± 19 171 ± 15 136 ± 18 124 ± 15 142 ± 16 141 ± 12	Number mean (nm)Z-average (nm)144 ± 8186 ± 577 ± 10137 ± 873 ± 31109 ± 2074 ± 24103 ± 1954 ± 688 ± 9121 ± 27197 ± 41140 ± 22172 ± 15157 ± 19225 ± 25177 ± 19258 ± 5149 ± 3317 ± 59139 ± 1176 ± 2169 ± 7205 ± 18139 ± 19215 ± 32171 ± 15237 ± 19136 ± 18175 ± 8124 ± 15173 ± 10141 ± 12171 ± 11

Table S1. Particle sizes obtained for various PLGA NP formulations using DLS. n = 3 unless otherwise stated.

*n=1

Figure S2A: Size distribution curves of all samples not shown in main manuscript. Samples: PLGA-A1-BSA-S-80s (A), PLGA-A1-BSA-S-120s (B), PLGA-A1-BSA-S-240s (C), PLGA-A1-BSA-S-80s (D), PLGA-A1-PVA-S-120s (E), PLGA-A1-PVA-S-240s (F). Each size distribution curve represents a different sample.

Figure S2B. Size distribution by intensity of all samples not shown in the main manuscript. Samples: PLGA-E1-PVA-S (A) and PLGA-E1-PVA-S-cur (B); PLGA-E2-PVA-S (C) and PLGA-E2-PVA-S-cur (D); PLGA-E2-PVA-H (E) and PLGA-E2-PVA-H-cur (F). Each size distribution curve represents a different sample.

Figure S3. The particle size distribution curve measured by nanoparticle tracking analysis (NTA) after emulsification via ultrasonication for (A) 20 s, (B) 40 s, (C) 60 s, (D) 80 s, (E) 100 s and (F) 120 s. The size distribution is given as a population values across 5 nm sized bins. The red curve represents the standard deviation within each size bin's population.

Sonication Time (s)	Initial Temp (°C)	Final Temp (°C)	Temp Change (°C)
40	3	9	6
80	2.5	7.5	5
120	3	8.5	5.5
160	3	7.5	4.5
200	3	8	5
240	3	8	5
280	3	7.5	4.5

 Table S2. Temperature measurements during sonication.

Figure S4: Size distribution by intensity of 3 runs from same sample (PLGA-E1-PVA-H-cur) using homogeniser.

Figure S5A. XPS narrow scan spectra of PLGA (A), PVA (B), and PLGA-A1-PVA-S NPs unwashed (C) and PLGA-A1-PVA-S NPs washed (D).

Figure S5B. ¹H NMR of PLGA-A1-PVA-S dissolved in d-DMSO (bottom) without washing (PLGA_{NP}) (middle) washed 1x (PLGA_{NP}-W) (top) washed 2 x (PLGA_{NP}-2W) in d-DMSO.

Figure S6. Assigned NMR of PLGA-A1-PVA-s-Cur and calculation of encapsulation efficiency determination.

Example Calculation:

$$Molar Ratio (M_R) = \frac{\frac{\int_{Drug}}{\#P_{Drug}}}{\frac{\int_{Polymer}}{\#P_{Polymer}}}$$

$$M_R = \frac{\frac{1}{2}}{\frac{16}{1}} = 0.031$$

Where;

∫Drug = integral of polymer peak, ∫ _{Polymer}

#P_{drug} = no. of protons corresponding to drug peak

= no. of protons corresponding to polymer peak **#P**polymer

Exp. Mass Ratio $(Em_R) = M_R \times \frac{Mw_{Drug}}{Mw_{Monomer}}$

Where;
$$Mw_{Drug}$$
= molecular weight of Drug $Mw_{Manamer}$ = molecular weight of repeat unit

$$Em_R = 0.031 \times \frac{368 \ g/mol}{130 \ g/mol} = 0.087$$

Theor. Mass Ratio $(Tm_R) = rac{m_{Drug}}{m_{Polymer}}$

Where;

$$m_{Drug}$$
 = mass of Drug
 $m_{Monomer}$ = molecular weight of monomer

$$Tm_R = \frac{0.001 \, g}{0.01 \, g} = 0.1$$

Encapsulation Efficency % (EE%) =
$$\frac{Em_r}{Tm_r} \times 100\%$$

$$EE\% = \frac{0.087}{0.1} \times 100\% = 87\%$$