Supporting information (SI)

Oxygen Vacancies Enable Excellent Electrochemical Kinetics of Carbon Coated Mesoporous SnO₂ Nanoparticles in Lithium Ion Battery

Boya Venugopal^{a,f,1*}, Parakandy Muzhikara Pratheeksha^{a,d,1}, Khasim Saheb Bayikadi^e, Pavan Srinivas Veluri^a, Mantripragada Rama Krishna^b, Bulusu Venkata Sarada^c, Tata Narasinga Rao^a, Paul Joseph Daniel^d and Srinivasan Anandan^{a*}

^a Centre for Nanomaterials, International Advanced Research Centre for Powder Metallurgy and New Materials, Hyderabad-500005, India.

^b Centre for Material Characterization and Testing, International Advanced Research Centre for Powder Metallurgy and New Materials, Hyderabad-500005, India.

^c Center for Solar Energy Materials, International Advanced Research Centre for Powder Metallurgy and New Materials, Hyderabad-500005, India.

^d Department of Physics-National Institute of Technology, Warangal-506 004, India.

^e Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.

^fDepartment of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.

Corresponding Authors

Email id: <u>b.venugopal77@gmail.com</u> and <u>anandan@arci.res.in</u>

¹ These authors contributed equally to this work

Fig. S1 (a) SEM image of $H-SnO_2$ particles (calcined at 400 °C), (b-c) elemental mapping of Sn and O (d) EDS analysis of $H-SnO_2$

Fig. S2: UV-vis- absorption spectrum of (a) H-SnO₂ As-synthesized, H-SnO₂ calcined at (b) $300 \degree C$, (c) $400 \degree C$ and (d) $450 \degree C$.

Fig. S3: TGA curves of the non-conventional carbon coated H-SnO₂: (a) NCC-1 (b) NCC-2 (c) NCC-3 and (d) NCC-4.

Fig. S4: Cyclic stability of pure SnO₂ tested at 0.1C rate

Fig. S5: Electrochemical performance of H-SnO₂ calcined at 300 °C, 400 °C and 450 °C tested at 0.1C (A) 1st cycle, (B) 2nd cycle and (C) 10th cycle and (D) cyclic stability of H-SnO₂ calcined at 300 °C, 400 °C and 450 °C

Fig. S6: Charge-discharge profile of carbon coated H-SnO_2 calcined at 300, 400 and 450 °C carbon coated by NCC-4 tested at (A) 0.1C, (B) 1C, (C) cyclic stability tested at 1C rate

Fig. S7 Rate performance of C@H-SnO₂-400 °C-NCC4

Fig. S8: XRD pattern for H-SnO₂ calcined at (a) 300 $^{\circ}$ C (b) 400 $^{\circ}$ C carbon coated by NCC-4

Fig. S9. Ex-situ XRD of H-SnO₂ after 50 cycles.

nanoparticles,	UV-Vis	data with	UV-vis	and TGA	results
----------------	--------	-----------	--------	---------	---------

		Lattice Parameters				
Sample	Crystallite			Unit cell	Band gap	Carbon
	size (nm)	a=b	c	volume (Å ³)	(e.V)	content (TGA)
H-SnO ₂ -300 °C	4.5	4.7311	3.1867	71.33	3.03	
H-SnO ₂ -400 °C	5.1	4.7342	3.186	71.4	2.76	
H-SnO ₂ -450 °C	6.8	4.7381	3.186	71.54	2.51	
C@H-SnO ₂ -NCC1	7.4	4.7461	3.189	71.8		3.5%

C@H-SnO ₂ -NCC2	7.3	4.7459	3.1752	71.52	4.7%
C@H-SnO ₂ -NCC3	7.1	4.708	3.189	71.4	7.0%
C@H-SnO ₂ -NCC4	7.7	4.7581	3.175	71.9	4.8%

Table S2. XPS core level of Sn3d, O1s and C1s of C@H-SnO₂ NPs by CC1 and NCC4

condition

Sample	Crystallite size (nm)	Binding energy (eV)	Binding energy (eV) C 1s	Δ (eV) for Sn 3d	Binding energy (eV)
		$Sn-3d_{5/2}$ and		(spin-orbit	O-1s
		Sn-5d _{3/2}		coupling)	(Deconvoluted)
C@H-SnO ₂ -CC	4.5	487.087	284.5	8.417	530.909
		495.310	286.199		531.587

C@H-SnO ₂ -NCC4	7.7	486.671	284.5	8.031	530.617
		495.210	285.437		532.179
			288.629		

•