Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Enhanced Toughness of Hydroxyapatite-poly(ethylene terephthalate) Composites by Immersion in Water

Yui Okuda, Ken Hirota, Tadashi Mizutani,* and Yusuke Numamoto

^a Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 Japan

^b Goo Chemical Corporation, Limited., 58 Ijiri, Iseda-cho, Uji, Kyoto 611-0043 Japan

*E-mail address of corresponding author <u>tmizutan@mail.doshisha.ac.jp</u>

Number of pages: 15 Number of figures: 8 Number of tables 3.

1. Characterization of the composite powder

Figure S1. XRD patterns of samples 4-9.

Figure S2. TG/DTA traces of the composites containing 50 wt% (a) and 70 wt% (b) of HAP.

2. Stress-strain curves of the composite compacts.

Figure S3. Representative stress-strain curves of samples 10-12 (N = 3).

S3

3. Water resistant test: UV-visible spectra of the aqueous phase after immersion of the composite compacts.

(a)

(c)

(e)

(g)

Figure S4. UV-visible spectra of the aqueous phase after immersion of the composite compacts. (a)--(e): immersion at room temperature for 24 h, (f)-(j): immersion at 37 °C for 1 week.

Figure S5. The weight % of CPET dissolved in water after immersion in water at room temperature for 24 h (a), and at 37 °C for 1 week, determined by UV-visible spectra of the water phase.

Comula	Dears town anothing 24 h	27.0C 1 week
Sample	Room temperature, 24 h	37°C, 1 week
1	0.01	0
2	0.9	4.1
3	0.7	8.4
4	0.3	0
5	0.8	0.4
6	3.3	4.0
7	0	0.1
8	0.2	0.4
9	3.3	4.4
10	0	0
11	0	0.4
12	2.8	6.2
13	0	0
14	0	0.6
15	2.7	6.8

Table S1. Concentrations of CPET (mg/L) in the aqueous phase after immersion of the compacts in 20 mL water at room temperature for 24 h or at 37 °C for 1 week.

Element	Wt%	At%
СК	23.82	37.41
ОК	34.16	40.27
NaK	01.21	00.99
РК	15.28	09.31
CaK	25.53	12.02
Matrix	Correction	ZAF

Figure S6. Energy dispersion spectra of the fracture surface of pristine sample 14.

Element	Wt%	At%
СК	35.49	47.25
OK	42.58	42.56
NaK	01.03	00.72
РК	09.75	05.03
CaK	11.15	04.45
Matrix	Correction	ZAF

Figure S7. Energy dispersion spectra of the fracture surface of sample 14 after immersed in water at room temperature for 24 h.

Element	Wt%	At%
СК	27.50	42.10
ОК	31.74	36.48
NaK	01.21	00.97
РК	17.09	10.15
CaK	22.45	10.30
Matrix	Correction	ZAF

Figure S8. Energy dispersion spectra of the fracture surface of sample 14 after immersed in water at 37 °C for 1 week.

4. Mechanical properties of compacts after immersion in water.

Table S2. Mechanical properties and densities of the compacts after immersion in water at room temperature for 24 h.

1							
		Bending	Bending Elastic		Elastic	Fracture	
Sample	density (g/cm ³)		strength	modulus 1	modulus 2	energy	N^b
		strain (70)	(MPa)	(GPa)	(GPa)	(MJ/m^3)	
1	1.331 ± 0.004	1.3 ± 0.1	15 ± 2	0.70 ± 0.03	1.6 ± 0.1	0.083 ± 0.008	3
2	1.54 ± 0.01	1.7 ± 0.1	14 ± 2	0.7 ± 0.3	1.0 ± 0.1	0.12 ± 0.03	3
3	1.82 ± 0.03	а	а	а	а	а	3
4	1.382 ± 0.008	1.8 ± 0.1	21.0 ± 0.2	1.0 ± 0.1	1.8 ± 0.2	0.19 ± 0.02	3
5	1.53 ± 0.03	1.6 ± 0.3	17 ± 1	0.8 ± 0.1	1.5 ± 0.1	0.12 ± 0.02	3
6	1.608 ± 0.009	а	а	а	а	а	3
7	1.376 ± 0.006	1.8 ± 0.3	22 ± 3	0.80 ± 0.04	1.7 ± 0.2	0.17 ± 0.05	3
8	1.597 ± 0.004	2.2 ± 0.1	25 ± 2	0.9 ± 0.2	1.8 ± 0.1	0.23 ± 0.03	3
9	1.73 ± 0.03	а	а	а	а	а	3
10	1.39 ± 0.01	1.4 ± 0.2	21 ± 1	1.1 ± 0.2	1.8 ± 0.3	0.130 ± 0.009	3
11	1.62 ± 0.02	2.0 ± 0.1	30 ± 1	1.1 ± 0.2	2.5 ± 0.1	0.26 ± 0.01	3
12	1.87 ± 0.02	1.0 ± 0.3	13.1 ± 0.5	1.2 ± 0.4	1.5 ± 0.2	0.06 ± 0.01	3
13	1.369 ± 0.007	2.4 ± 0.2	26 ± 2	0.46 ± 0.06	2.1 ± 0.2	0.232 ± 0.009	3
14	1.64 ± 0.02	2.8 ± 0.3	38 ± 2	0.55 ± 0.03	1.9 ± 0.1	0.45 ± 0.05	3
15	1.81 ± 0.01	а	а	а	а	а	3

a The compacts were collapsed after immersion in water, and a three point bending test cannot be carried out. b The number of determinations.

Sample		Bending	Bending Elastic strength modulus 1		Elastic	Fracture	N^b
	density (g/cm ³)				modulus 2	energy	
		strain (%)	(MPa)	(GPa)	(GPa)	(MJ/m^3)	
1	1.38 ± 0.02	1.5 ± 0.1	13 ± 2	0.85 ± 0.08	$\begin{array}{c} 1.20 \pm \\ 0.07 \end{array}$	0.08 ± 0.02	3
2	1.56 ± 0.02	0.6 ± 0.2	5 ± 1	1.0 ± 0.1	1.0 ± 0.2	0.017 ± 0.009	3
3	1.82 ± 0.03	а	а	а	а	а	3
4	1.39 ± 0.02	1.6 ± 0.4	15 ± 3	0.8 ± 0.1	$\begin{array}{c} 1.14 \pm \\ 0.09 \end{array}$	0.11 ± 0.04	3
5	1.542 ± 0.001	0.13 ± 0.08	2 ± 1	0.6 ± 0.3	0.6 ± 0.3	0.002 ± 0.002	3
6	1.79 ± 0.03	а	а	а	а	а	3
7	1.378 ± 0.004	2.1 ± 0.2	15.4 ± 0.9	0.50 ± 0.05	1.03 ± 0.08	0.14 ± 0.01	3
8	1.587 ± 0.008	0.45 ± 0.05	4.6 ± 0.7	0.9 ± 0.1	0.9 ± 0.1	0.011 ± 0.003	3
9	1.830 ± 0.008	а	а	а	а	а	3
10	1.39 ± 0.01	1.54 ± 0.05	19 ± 1	0.68 ± 0.02	1.7 ± 0.2	0.123 ± 0.008	5
11	1.61 ± 0.02	1.2 ± 0.1	18 ± 1	1.1 ± 0.1	1.5 ± 0.1	0.10 ± 0.01	5
12	1.74 ± 0.03	а	а	а	а	а	5
13	1.371 ± 0.009	2.2 ± 0.2	22 ± 1	0.68 ± 0.06	$\begin{array}{c} 1.50 \pm \\ 0.02 \end{array}$	0.21 ± 0.03	3
14	1.60 ± 0.03	7.43 ± 0.05	22.0 ± 0.9	0.53 ± 0.04	$\begin{array}{c} 0.18 \pm \\ 0.01 \end{array}$	0.96 ± 0.01	3
15	1.79 ± 0.04	а	а	а	а	а	3

Table S3.	Mechanical	properties	and den	sities of	the com	npacts at	fter im	mersion	in water	at 37	°C for
1 week.											

a The compacts were collapsed after immersion in water, and a three point bending test cannot be carried out. b The number of determinations.