Electronic Supplementary Information

Enriching surface oxygen vacancies of spinel Co3O⁴ to boost H2O adsorption for HER in alkaline media

*Ting Zhu, * ^a Jun Pan, ^a Ying Xiao, ^a Anqiang Pan ^a and Shuquan Liang* ^a*

^a School of Materials Science & Engineering, Central South University, Changsha 410083, Hunan, China.

Email: zhut0002@csu.edu.cn (T. Zhu); lsq@csu.edu.cn (S. Q. Liang)

Fig. S1. Simulation models: bulk lattice structures of $Co₃O₄$ (a) and $CoS₂$ (b); Co-O terminals of Co_3O_4 (111) (c) and $CoO_{0.88}S_{0.11}$ (111) (c), and Co-S terminal CoS_2 (111) (e).

Based on the bulk lattice structures of $Co₃O₄$ and $CoS₂$, a vacuum layer of 15 Å was added to exclude the periodic boundary interference in Z axis. The H layers at the bottom were added to remove the interference from surface Co-O or Co-S terminals.

Fig. S2. SEM images of the CBP PS.

Fig. S3. SEM images of the $Co₃O₄$ (a-c) and $CoS₂$ (d-e) derived from CBP PS.

Fig. S4. TEM (a, c) and HR-TEM (b, d) images of the $Co₃O₄$ (a, b) and $CoS₂$ (c, d).

Fig. S5. XRD patterns of the as-synthesized CoS_2 , $CoO_{0.88}S_{0.11}$, and Co_3O_4 samples.

The XRD peak of $Co₃O₄$ (311) was shifted from 36.86 \degree to 36.78 \degree after introduction of S atoms, indicating the expansion of (311) lattice spacing in the presence of S atoms.

Fig. S6. XPS results of Co 2p (a), and O 1s (b) of the pristine Co₃O₄ sample.

Fig. S7. XPS results of Co 2p (a), and S 2p (b) of the CoS₂ sample.

Fig. S8. LSV curves of the partially sulfurized samples obtained from 200, 250, and 350 $\rm ^oC.$ The inset is a magnified LSV region that shows the current density of 10 mA cm $\rm ^2.$

The LSV curves reveal that $OP@10$ mA cm⁻² decreases when the sulfurization temperature increases, which is consistent with the ESR results of Fig. 3d.

Fig. S9. LSV curves (a), and Tafel plots (b) of the $CoO_{0.88}S_{0.11}$, $CoS₂$, and $Co₃O₄$ samples, respectively. The electrolyte used is 0.5 M of $H₂SO₄$ aqueous solution.

Fig. S10. CV curves obtained from various scan rates with the same non-Faradaic potential region of -0.1 - 0 V (vs. SCE) for all the three samples.

The CV measurements were performed within a non-Faradaic potential region to estimate the electrochemical double-layer capacitance.

Fig. S11. LSV curves obtained before and after stability tests (for 12 h) for the samples $Co₃O₄$ (a), $CoO_{0.88}S_{0.11}$ (b), and $CoS₂$ (c), respectively.

The overpotential differences ($\Delta \eta = OP$ after – OP before) of η_{100} are -34, -24, and 33 mV for the samples $Co₃O₄$, $CoO_{0.88}S_{0.11}$, and $CoS₂$, respectively. The results indicate that the catalytic activities for $Co₃O₄$ and $CoO_{0.88}S_{0.11}$ are improved after stability tests, but deteriorated for CoS₂.

Table S1. Comparison table of the previously reported electrocatalysts for HER.

References

- 1. ACS Applied Materials & Interfaces, 2020, 12, 33595-33602.
- 2. ACS Catalysis, 2018, 8, 8077-8083.
- 3. ACS Catalysis, 2019, 9, 456-465.
- 4. Small, 2020, 16, 2002888. (Note: **Ru metal was used!**)
- 5. Journal of Materials Chemistry A, 2017, 5, 4513-4526.
- 6. Journal of Materials Chemistry A, 2016, 4, 6860–6867.
- 7. Nano Energy, 2015, 18, 1-11.

8. Angewandte Chemie International Edition, 2014, 126, 12802 -12807.