Electronic Supplementary Information

Enriching surface oxygen vacancies of spinel Co₃O₄ to boost H₂O adsorption for HER in alkaline media

Ting Zhu, *a Jun Pan, a Ying Xiao, a Angiang Pan a and Shuquan Liang*a

^a School of Materials Science & Engineering, Central South University, Changsha 410083, Hunan, China.

Email: <u>zhut0002@csu.edu.cn</u> (T. Zhu); <u>lsq@csu.edu.cn</u> (S. Q. Liang)

Fig. S1. Simulation models: bulk lattice structures of Co_3O_4 (a) and CoS_2 (b); Co-O terminals of Co_3O_4 (111) (c) and $CoO_{0.88}S_{0.11}$ (111) (c), and Co-S terminal CoS_2 (111) (e).

Based on the bulk lattice structures of Co_3O_4 and CoS_2 , a vacuum layer of 15 Å was added to exclude the periodic boundary interference in Z axis. The H layers at the bottom were added to remove the interference from surface Co-O or Co-S terminals.

Fig. S2. SEM images of the CBP PS.

Fig. S3. SEM images of the Co_3O_4 (a-c) and CoS_2 (d-e) derived from CBP PS.

Fig. S4. TEM (a, c) and HR-TEM (b, d) images of the Co_3O_4 (a, b) and CoS_2 (c, d).

Fig. S5. XRD patterns of the as-synthesized CoS_2 , $CoO_{0.88}S_{0.11}$, and Co_3O_4 samples.

The XRD peak of Co_3O_4 (311) was shifted from 36.86° to 36.78° after introduction of S atoms, indicating the expansion of (311) lattice spacing in the presence of S atoms.

Fig. S6. XPS results of Co 2p (a), and O 1s (b) of the pristine Co_3O_4 sample.

Fig. S7. XPS results of Co 2p (a), and S 2p (b) of the CoS₂ sample.

Fig. S8. LSV curves of the partially sulfurized samples obtained from 200, 250, and 350 °C. The inset is a magnified LSV region that shows the current density of 10 mA cm⁻².

The LSV curves reveal that $OP@10 \text{ mA cm}^{-2}$ decreases when the sulfurization temperature increases, which is consistent with the ESR results of Fig. 3d.

Fig. S9. LSV curves (a) , and Tafel plots (b) of the $CoO_{0.88}S_{0.11}$, CoS_2 , and Co_3O_4 samples, respectively. The electrolyte used is 0.5 M of H₂SO₄ aqueous solution.

Fig. S10. CV curves obtained from various scan rates with the same non-Faradaic potential region of -0.1 - 0 V (vs. SCE) for all the three samples.

The CV measurements were performed within a non-Faradaic potential region to estimate the electrochemical double-layer capacitance.

Fig. S11. LSV curves obtained before and after stability tests (for 12 h) for the samples Co_3O_4 (a), $CoO_{0.88}S_{0.11}$ (b), and CoS_2 (c), respectively.

The overpotential differences ($\Delta \eta = OP_{after} - OP_{before}$) of η_{100} are -34, -24, and 33 mV for the samples Co_3O_4 , $CoO_{0.88}S_{0.11}$, and CoS_2 , respectively. The results indicate that the catalytic activities for Co_3O_4 and $CoO_{0.88}S_{0.11}$ are improved after stability tests, but deteriorated for CoS_2 .

Catalysts	Electrolyte	Morphology	η_{10}	Tafel slope	Ref.
			(mV)	(mV Dec ⁻¹)	
CoO _{0.88} S _{0.11}	1 M KOH	spheres	83	80	this work
CoO _{0.88} S _{0.11}	0.5 M H ₂ SO ₄	spheres	116	87	this work
CoS@CoNi-LDH/CC	1 M KOH	nanorods	124	89	1
Co_3S_4	1 M KOH	nanosheets	163	103	2
meso CoSSe	$0.5 \mathrm{~M~H_2SO_4}$	spheres	110	52	3
$Ru/Ti_3C_2T_x$	0.1 M HClO ₄	nanosheets	70	76	4
CoSe ₂	1 M KOH	nanotubes	124	66	5
Co ₉ S ₈ /CC	$0.5 \text{ M H}_2\text{SO}_4$	nanosheets	150	-	6
$Co(S_{0.73}Se_{0.27})_2$	$0.5 \text{ M H}_2\text{SO}_4$	nanowires	104	45	7
CoS ₂ /RGO-CNT	0.5 M H ₂ SO ₄	nanosheets	142	51	8

Table S1. Comparison table of the previously reported electrocatalysts for HER.

References

- 1. ACS Applied Materials & Interfaces, 2020, 12, 33595-33602.
- 2. ACS Catalysis, 2018, 8, 8077-8083.
- 3. ACS Catalysis, 2019, 9, 456-465.
- 4. Small, 2020, 16, 2002888. (Note: Ru metal was used!)
- 5. Journal of Materials Chemistry A, 2017, 5, 4513-4526.
- 6. Journal of Materials Chemistry A, 2016, 4, 6860–6867.
- 7. Nano Energy, 2015, 18, 1-11.

8. Angewandte Chemie International Edition, 2014, 126, 12802 -12807.