$\mathrm{H}_{2} \mathrm{O}_{2}$-Replenishable and GSH-Depletive ROS ‘Bomb' for SelfEnhanced Chemodynamic Therapy

Fan Zhao, \#ab Jing Yu, ${ }^{\#, * a b}$ Jiayu Yao, ${ }^{c}$ Yu Tong, ${ }^{c}$ Dan Su, ${ }^{d}$ Qing Xu ${ }^{a b}$ Juan Li ${ }^{a b}$ Yao Ying, ${ }^{a b}$ Wangchang Li ${ }^{\text {ab }}$ Liang Qiao, ${ }^{a b}$ Jingwu Zheng, ${ }^{a b}$ Wei Cai, ${ }^{a b}$ Xiaozhou Mou, ${ }^{*, c}$ and Shenglei Che, ${ }^{*}, a b$
a College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
b Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
c Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
d Department of Oncology, First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China

Table S1. The content of Fe in CaO_{2} - Fe NPs with different feeding ratios

Feeding ratios	$\mathrm{Fe}(\mathrm{wt} \%)$
$10: 1$	1.1
$8: 1$	2.6
$6: 1$	3.2
$4: 1$	4.0
$2: 1$	-

Figure S1. TEM image of $\mathrm{CaO}_{2} \mathrm{NPs}$ (inset: an image at a higher magnification of $\mathrm{CaO}_{2} \mathrm{NPs}$).

Figure S2. Dynamic light scattering (DLS) measurement of CaO_{2} and CaO_{2}-Fe NPs.

Figure S3. HAADF-STEM and elemental mapping of Fe, Ca, and O of CaO_{2} - Fe NPs.

Figure S4. TEM image of CaO_{2}-Fe NPs by dispersing in pH 5.4 with different time.

Figure S5. UV-Vis absorption spectra and photo (inset) of KMnO_{4} after treating with $\mathrm{CaO}_{2}-\mathrm{Fe}$ NPs in different pH environment.

Figure S6. DLS spectrum of $\mathrm{CaO}_{2}-\mathrm{Fe}$ NPs dispersing in PBS with different time.

Figure S7. UV-Vis absorption spectra and photo (inset) of MB after degradation by different amount of GSH at pH 5.4.

Figure S8. Photos of potassium ferricyanide (Fe^{2+} indicator) dispersed in $\mathrm{CaO}_{2}-\mathrm{Fe}$ or $\mathrm{CaO}_{2}-\mathrm{Fe}$ plus GSH solution.

Figure S9. UV-vis absorption spectra and photo (inset) of DTNB (GSH indicator) after treating with $\mathrm{CaO}_{2}-\mathrm{Fe}$ NPs and GSH at pH 5.4 in different time.

Figure S10. (a) UV-Vis absorption spectra of MB after degradation by CaO_{2} NPs treated with different amount of GSH at pH 5.4. (b) Bar graph of the degradation percent of MB by $\mathrm{CaO}_{2}-\mathrm{Fe}$ NPs or CaO_{2} NPs treated with different amount of GSH at pH 5.4.

Figure S11. TPA assay of CaO_{2} - Fe NPs with different $\mathrm{Fe}(\mathrm{wt} \%$) in pH 5.4 solution with 10 mM GSH.

Figure S12. (a) UV-Vis absorption spectra and photo (inset) of MB after degradation by $\mathrm{CaO}_{2^{-}}$ Fe NPs treated with different amount of GSH at pH 7.4. (b) Bar graph of the degradation percent of MB by $\mathrm{CaO}_{2}-\mathrm{Fe}$ NPs treated with different amount of GSH at different pH values.

Figure S13. Fluorescence images of DCFH-DA-stained 4T1 cells after exposure to different amount of $\mathrm{CaO}_{2}-\mathrm{Fe}$ NPs for 4 h . The scale bar represents $100 \mu \mathrm{~m}$.

Figure S14. Flow cytometry analysis of ROS generation in 4T1 cells treated with different agents, as detected with DCFH-DA.

Figure S15. Fluorescence images of calcein AM (green, live cells) and PI (red, dead cells) costained 4T1 cells after incubation with different amount of CaO_{2} - Fe NPs for 24 h . The scale bar represents $100 \mu \mathrm{~m}$.

Figure S16. (a) Viability of tumor cell lines (HCT 116, MDA-MB-231, and Hela) after 24 h of incubation with CaO_{2}-Fe NPs. (b) Viability of normal cell lines (L02 and HEK 293) after 24 h of incubation with $\mathrm{CaO}_{2}-\mathrm{Fe}$ NPs.

Figure S17. Intracellular GSH levels of 4 T 1 cells after treating with CaO_{2} - Fe NPs 8 h . ($n=3$, mean \pm s.d., ${ }^{* * * p<0.001) ~}$

Figure S18. Fluorescence images of DCFH-DA-stained L929 cells after exposure to different amount of $\mathrm{CaO}_{2}-\mathrm{Fe}$ NPs for 4 h . The scale bar represents $100 \mu \mathrm{~m}$.

Figure S19. (a) In vivo NIR imaging of tumor-bearing mice intravenous injected with IR783loaded CaO_{2}-Fe NPs at $1,3,6$, and 24 h post-injection. (B) NIR imaging of various tissues at 24 h postinjection.

Figure S20. Blood circulation of $\mathrm{CaO}_{2}-\mathrm{Fe}$ NPs. The data were obtained by measuring IR-783 fluorescence in the blood samples.

Figure S21. Images of H\&E stained major tissues after therapy. The scale bar represents $100 \mu \mathrm{~m}$.

Figure S22. Blood hematology analysis of healthy mice after intravenously injected with saline or $\mathrm{CaO}_{2}-\mathrm{Fe}$ NPs for 17 days. ($\mathrm{n}=3$, mean \pm s.d.)

