Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2021

Supporting Informations

For

Variation in solvato-, AIE- and mechano-fluorochromic behavior for furanyl and thiophenyl-substituted anthranyl π-conjugates: role of tiny flanking donor groups

Madhuparna Chakraborty and Manab Chakravarty*

Department of Chemistry, BITS-Pilani Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad-500078, Telangana (India)

Contents:

- 1. Synthetic scheme for TAPTZ and FAPTZ (Scheme-1)S3
- 2. Thermogravimetric analysis (TGA) plot (Figure-S1)S4
- 4. DFT-optimized Molecular structures (Figure-S3)S4
- Plot of E_T(30) vs (a) Stokes shift and (b) Emission max (λ_{max}) for TAPTZ (Figure-S4)......S5
- Plot of E_T(30) vs (a) Stokes shift and (b) Emission max (λ_{max}) for FAPTZ (Figure-S5)......S5
- 8. Lippert-mataga Plot for TAPTZ and FAPTZ (Figure-S7)S6
- 9. Change in Emission [$\Delta\lambda_{max}$ (nm)] and dipole moment difference for TAPTZ and FAPTZ (Table-S1) S6

- 12. Solid-state absorption spectra before and after grinding (Figure-S10)S7
- The plot of maximum emission wavelength changes with multiple grinding/Fuming process (Figure-S11)S7
- 14. Solid-state lifetime decay plots (Figure-S12)S7

15. Li	fetime r	neasuremer	nt table	(Table-S	52)	• • • • • • • • •		•••••		.S8
16. Si	ngle-cry	stal X-ray	table (T	[able-S3])		•••••			S8
17. Cr	ystal	packing	diagra	am fo	r TA	PTZ	and	FAPTZ	(Fig	gure-S13)
		S	9							
18. Hi	rshfeld	surface 2D	fingerp	orint plots	s (Figure	e-S14)				.S9
19. ¹ H	NMR	spectra	for T l	hiophene	e linked	antl	hracenyl	phospho	onate	(Figure-
S1	5)			•••••	S10					
20. ¹ H	NMI	R spectra	for	Furan	linked	anth	racenyl	phospho	nate	(Figure-
S1	6)			•••••	S10					
21. ¹³ 0	C NM	R spectra	for	Furan	linked	anth	racenyl	phospho	nate	(Figure-
S1	7)			•••••	S11					
22. ¹ H	NMR	spectra for	ГАРТZ	Z (Figure	e-S18)					S11
23. ¹³ 0	C NMR	spectra for	TAPT	Z (Figur	e-S19)		•••••			S12
24. ¹ H	NMR	spectra for 1	FAPTZ	L (Figure	e-S20)		•••••		S12	2
25. ¹³ 0	C NMR	spectra for	FAPT	Z (Figur	e-S21)				S13	;

Synthesis and Characterization of diethyl ((10-(thiophen-2-yl)anthracen-9-yl)methyl)phosphonate:

This compound was earlier reported by us.¹

¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, J = 8.9 Hz, 2H), 7.89 (d, J = 8.8 Hz, 2H), 7.63 – 7.54 (m, 3H), 7.42 (dd, J = 8.7, 6.5 Hz, 2H), 7.31 (dd, J = 5.2, 3.4 Hz, 1H), 7.19 (m, 1H), 4.29 (d, J = 22.5 Hz, 2H), 4.08 – 3.83 (m, 4H), 1.17 (t, J = 7.1 Hz, 6H).

Synthesis and Characterization of diethyl ((10-(furan-2-yl)anthracen-9-yl)methyl)phosphonate:

In a 50mL round-bottomed flask, diethyl (anthracen-9-yl(hydroxy)methyl)phosphonate (1.0 g, 2.904mmol) was dissolved in 40ml of dry dichloroethane in ice temperature followed by the addition of methanesulfonic acid (0.565ml, 8.712mmol) and furan (0.211 ml, 2.904 mmol). The reaction was allowed to stir for 5 h. The completion of the reaction was monitored by TLC plate. The reaction mixture was quenched by water and extracted with dichloromethane (20 mL x 3). The organic layer was filtered and dried over anhydrous sodium sulfate and evaporated under reduced pressure. The compound was purified by column chromatography (100-200 mesh sized silica gel) using 25% ethyl acetate in petroleum ether to obtain as a yellow gummy liquid. Yield: 0.572 g, 50 %. IR ($v \text{ cm}^{-1}$, in KBr): 2981, 1249, 1024, 958. ¹H NMR (400 MHz, CDCl₃) δ 8.37-8.39 (m, 2H), 7.85-7.88 (m, 2H), 7.75 (dd, J = 1.9, 0.8 Hz, 1H), 7.54-7.58 (m, 2H), 7.46 – 7.42 (m, 2H), 6.65-6.66 (m, 1H), 6.71-6.72 (m, 1H), 4.28 (d, J = 22.7 Hz, 2H), 4.00 – 3.80 (m, 4H), 1.11 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 150.6, 142.9, 131.6 (d, J = 4.3 Hz), 130.1 (d, J = 6.7 Hz), 127.0, 126.3 (d, J = 6.2 Hz), 126.1, 126.0, 125.7 (d, J = 9.4 Hz), 125.2 (d, J = 3.0 Hz), 112.4, 110.9, 62.3 (d, J = 6.8 Hz), 27.5 (d, J = 140.7 Hz), 16.3 (d, J = 6.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 25.3.

Scheme S1: Synthetic route for phosphonates

Figure S1: TGA plot for TAPTZ and FAPTZ

Figure S2: Absorbance and emission spectra of both spectra of both the compounds in different polar solvents.

Figure S3: DFT-optimized (CAMB3LYP 6-31 G (d,p) Molecular structures

Figure S4: Compound TAPTZ; the plot of $E_T(30)$ vs . (a) Stokes shift and (b) Emission max (λ_{max})

Figure S5: Compound FAPTZ; the plot of $E_T(30)$ vs . (a) Stokes shift and (b) Emission max (λ_{max}).

Figure S6: Compound TAPTZ and FAPTZ (10⁻⁵ M) with different fraction of glycerol in MeOH showing viscochromism (a) Absorption Spectra of TAPTZ (b) Emission spectra of TAPTZ. (c) Absorption Spectra of FAPTZ (d) Emission spectra of FAPTZ. ($\lambda_{ex} = 405$ nm)

Figure S7: Lippert-Mataga Plot (Δf vs Stokes shift in different solvents)

The difference in dipole moment between ground and singlet excited state was calculated using the formula

$$m = \frac{2(\mu_e - \mu_g)^2}{hca^3}$$

The slopes m was obtained from the Lippert–Mataga plots.

For **FAPTZ**

a = 6.529 Å; slope(m) = 7004.14

For TAPTZ

a = 6.68 Å; slope(m) = 6970.7

Table S1: Shift and the difference between excited and ground state dipole moment

Compounds	Emission λ _{max} (nm) (Hexane)	Emission λ _{max} (nm) (MeCN)	Emission Δλ _{max} (nm)	Shift type	Difference in dipole moment (µ _e -µ _g)
TAPTZ	528	646	118	Red	14.37 D
FAPTZ	537	644	107	Red	13.91 D

Figure S8: UV-vis spectra with different fraction of H₂O in MeCN

Figure S9: DLS studies of the compounds

Figure S10: Solid-state absorption spectra for TAPTZ and FAPTZ before and after grinding

Figure S11: The plot of maximum emission wavelength changes with multiple grinding/Fuming process.

Figure S12: Solid-state lifetime decay for TAPTZ and FAPTZ

Compounds	States	α1	α2	α3	α4	τ1	τ2	$ au_3$	τ_4	<τ>	χ2
TAPTZ	Pristine	0.24	0.05	0.70		1.11	3.19	0.29		0.65	1.05
	Ground	0.27	0.29	0.05	0.38	0.61	2.33	4.88	0.11	1.16	1.06
FAPTZ	Pristine	0.34	0.07	0.58	0.88	1.88	0.24	0.57	1.27	0.57	1.27
	Ground	0.25	0.05	0.7	0.95	2.83	0.23	0.54	1.22	0.54	1.22

Table S2: Parameter related to lifetime (τ ; ns) measurement of excited state. λ_{ex} = 405 nm

 Table S3. Single-crystal X-ray table

Compounds	ТАРТΖ	FAPTZ
Emp. Formula	C ₃₇ H ₃₁ NS ₂	C ₃₇ H ₃₁ NOS
Formula Weight	553.78	537.72
Crystal System	Triclinic	Triclinic
Space Group	P-1	P-1
a /Å	9.7359	9.4072
b /Å	11.8665	12.0367
c /Å	13.2451	12.9302
α/degree	79.713	75.199
□/degree	69.428	75.683
□/degree	88.969	81.825
V /Å ³	1407.95(2)	1366.68(4)
Ζ	2	2
D _{calc} /g cm-3	1.306	1.307
μ /mm ⁻¹	1.912	1.287
F (000)	584	568
Data/ restraints/ parameters	5893/12/394	5734/0/362
S	1.078	1.011
R1 [I>2σ(I)]	0.0358	0.048
wR2 [all data]	0.0989	0.1322

Max./min. residual electron dens.	0.243/-0.335	0.5125/-0.5248
[eÅ-3]		

Figure S13: Crystal packing diagram from all the axes

Figure S14: d_{norm} Hirshfeld surfaces for **TAPTZ** and **FAPTZ** and their 2D finger plots of C...H, H...C and C...C interactions,

Figure S15: ¹H-NMR spectrum of Thiophene linked anthracenyl phosphonate in CDCl₃

Figure S16: ¹H-NMR spectrum of Furan linked anthracenyl phosphonate in CDCl₃

Figure S17: ¹³C-NMR spectrum of Furan linked anthracenyl phosphonate in CDCl₃

Figure S18: ¹H NMR spectrum for TAPTZ in CDCl₃

Figure S20: ¹H NMR spectrum for FAPTZ in CDCl₃

Figure S21: ¹³C NMR spectrum for FAPTZ in CDCl₃

References

1. M. Z. K. Baig, G. Pallikonda, P. Trivedi, R. N. P. Tulichala, B. Ghosh and M. Chakravarty, *ChemistrySelect*, 2016, 1, 4332–4339.

END