Supporting information

Leaf-like copper oxide mesocrystals by collagen-assisted biomineralization show attractive biofunctional and electrochemical performance

Huixia He, Wenyu Wei, Yongling An, Jinkui Feng, Jianxi Xiao

Figure S1. XPS spectra of the as-prepared CuO samples obtained after 12 hrs via collagen-templated biomineralization ([collagen] = 0.5 wt %, [Cu(II)] = 0.02 mol/L). (a). Survey spectrum; (b). High-resolution Cu 2p spectrum.

Figure S2. EDX spectrum the as-prepared CuO samples obtained after 12 hrs via collagen-templated biomineralization ([collagen] = 0.5 wt %, [Cu(II)] = 0.02 mol/L).

Figure S3. FT-IR spectrum of the as-prepared CuO samples obtained after 12 hrs via collagen-templated biomineralization ([collagen] = 0.5 wt %, [Cu(II)] = 0.02 mol/L).

Figure S4. FESEM images of CuO nanocrystals obtained after 12 hrs via collagentemplated biomineralization with a constant concentration of collagen ([collagen] = 0.1 wt %) and various concentrations of Cu²⁺: (a) 0.01 mol/L, (b) 0.02 mol/L, (c) 0.03 mol/L, (d) 0.1 mol/L.

Materials	First	Reversible	Cycle	Initial	Ref.
	discharge	capacity	performance	coulombi	
	capacity			с	
				efficiency	
Bundle-like CuO	1179mAh/g	800mAh/g	666mAh/g	67.85%	1
	(0.3C)		(0.3C 50th)		
Almonds-like CuO	1200mAh/g	820mAh/g	590mAh/g	68.33%	2
	(0.3C)		(0.3C 50th)		
CuO microspheres	860mAh/g	500mAh/g	500mAh/g	58.12%	3
	(0.1C)		(0.1C 25th)		
leaf-like CuO	1094.7mA	661.9mA h/g	/	59.5%	4
nanoplate	h/g				
CuO microspheres	967.1mAh/g	601.6mAh/g	569.8mAh/g	62.2%	5
	(0.1C)		(0.1C 50th)		
CuO microspheres	1063.9mAh/	589.6mAh/g	429mAh/g	62.4%	6
	g		(0.1C 50th)		
	(0.1C)				
CuO nanorods	/	/	654 mAh/g	97%	7
			(0.5C 200 th)		
CuO nanosheets		467mAh/g	442 mAh/g	60%.	8
CuO nanosparticle	1196mAh/g	/	540mAh/g	/	9
	(0.5C)		(0.5C 100 th)		
leaf-like CuO	880 mAh/g	648.6mAh/g	694.7mAh/g	73.7%	10
leaf-like CuO	1002.4	563.8mAh/g	421mAh/g	72.7 %,	11
	mAh/g		(0.1 C 55 th)		
	(0.1C)				
needle-like CuO	1047mAh/g	/		65%	12
T (1 611	12(0 11/	1041 11/	010 11/	7.01	T 1 '
Lotus leaf-like	1369mAh/g	1041mAh/g	910mAh/g	/6%	This
structure	(0.2C)		$(0.2C \ 80^{m})$		work

Table S1. Comparison of the electrochemical performance of CuO nanomaterials as anodes.

Reference

- L. L. Wang, W. Cheng, H. X. Gong, C. H. Wang, D. Wang, K. B. Tang and Y. T. Qian, J. Mater. Chem., 2012, 22, 11297-11302.
- 2. X. Fei, Z. Shao and X. Chen, Nanoscale, 2013, 5, 7991-7997.
- 3. S. F. Zheng, J. S. Hu, L. S. Zhong, W. G. Song, L. J. Wan and G. Y. Guo, Chem.

Mater, 2008, **20**, 3617–3622.

- Z. Li, G. Y. Li, W. Y. Xu, M. J. Zhou, C. X. Xu, M. T. Shi, F. Y. Li, L. Chen and B. H. He, *ChemElectroChem*, 2018.
- Z. Zhang, H. Chen, B. X.She, J. Sun, J. Teo and F.Su, *J.Power Sources*, 2012, 217, 336-344.
- C. Wang, D.Higgins, F.Wang, D.Li, R.Liu, G.Xia , N.Li, Q.Li, H.Xu and G. Wu, Nano Energy, 2014, 9, 334-344.
- L. L. Wang, H. X. Gong, C. H. Wang, D. Wang, K. B. Tang and Y. T. Qian, Nanoscale, 2012, 4, 6850.
- Y. Liu, Y. Qiao, W. X. Zhang, P. Hu, C. J. Chen, Z. Li, L. X. Yuan, X. L. Hu and Y. H. Huang, *Journal of Alloys and Compounds*, 2014, 586 208–215.
- L. L. Wang, K. B. Tang, M. Zhang, X. Z. Zhang and J. L. Xu, Functional Materials Letters, 2014, 7, 1440008
- 10. Z. C. Bai, Y. W. Zhang, Y. H. Zhang, C. L. Guo and B. Tang, *Electrochimica Acta* 2015, **159** 29–34.
- 11. C.Wang, Q. Li, F.Wang, G.Xia, R.Liu, D.Li, J.S.Spendelow and G.Wu, ACS Appl.Mater.Interfaces, 2013, 6, 1243-1250.
- J.Y.Xiang , P.J.Tu, L.Zhang , Y. Zhou, L.X.Wang and J.S.Shi, *Electrochim.Acta* , 2010, 55, 1820-1824.