Supporting Information

Role of π -spacer in Regulating the Photovoltaic Performance of Copper Electrolyte Dye-sensitized Solar Cells Using Triphenylimidazole Dyes

Palivela Siva Gangadhar,^{a,c‡} Anooja Jagadeesh,^{b,c‡} Manne Naga Rajesh,^{a,c} Andrew Simon George,^{b,c} Seelam Prasanthkumar,^{a,c} Suraj Soman,^{b,c}* Lingamallu Giribabu^{a,c}*

^aPolymer and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India. E-mail:giribabu@iict.res.in

^bPhotosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.E-mail:suraj@niist.res.in

^cAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad, New Delhi 201002, India.

[‡]These authors contributed equally towards the completion of this work

	Table of Contents	Page
		NO.
Figure S1	Molecular structures of LG-P1 and LG-P3 sensitizers.	S4
Figure S2	¹ H NMR spectrum (400 MHz, CDCl ₃) of 4.	S4
Figure S3	^{13}C NMR spectrum (400 MHz, CDCl ₃) of 4.	S5
Figure S4	MALDI-TOF of 4.	S5
Figure S5	¹ H NMR spectrum (400 MHz, CDCl ₃) of 5.	S6
Figure S6	^{13}C NMR spectrum (400 MHz, CDCl ₃) of 5 .	S6
Figure S7	MALDI-TOF of 5.	S7
Figure S8	¹ H NMR spectrum (400 MHz, DMSO- d_6) of LG-P2.	S7
Figure S9	¹³ C NMR spectrum (400 MHz, DMSO- d_6) of LG-P2 .	S8
Figure S10	MALDI-TOF of LG-P2	S8
Figure S11	¹ H NMR spectrum (400 MHz, DMSO- d_6) of LG-P4 .	S9
Figure S12	¹³ C NMR spectrum (400 MHz, DMSO- d_6) of LG-P4 .	S9
Figure S13	MALDI-TOF of LG-P4 .	S10
Figure S14	Absorption spectra of LG-P2 and LG-P4.	S10
Figure S15	Absorption spectra of LG-P1 and LG-P3 in DCM	S11
Figure S16	(a) Transport time and (b) charge collection efficiency obtained from transient photovoltage and photocurrent decay measurements.	S11
Figure S17	Bode plot obtained from EIS measurement in dark (at 0.6V).	S12
Table S1	Singlet excited state properties of dyes by B3LYP method and M06-2X function in tetrahydrofuran solvent in PCM model.	S13
Table S2	Comparison of J-V parameters obtained at one sun condition for the best performing DSSCs based on LG-P1 and LG-P3 dyes (previous work) with LG-P2 and LG-P4 dyes (current work)	S14
Table S3	Comparison Photovoltaic data of LG-P1 and LG-P3 under low light conditions.	S14

Table S4.	Photovoltaic data of LG-P2 and LG-P4 based device under 1000 lux daylight LED illumination.	S15

Figure S1. Molecular structures of LG-P1 and LG-P3 sensitizers.

Figure S2:¹H NMR spectrum (400 MHz, CDCl3) of 4.

Figure S3: ¹³C NMR spectrum (400 MHz, CDCl3) of 4.

Figure S4: *MALDI-TOF of 4*.

Figure S5: ¹H NMR spectrum (400 MHz, CDCl3) of 5.

Figure S6: ¹³C NMR spectrum (400 MHz, CDCl3) of 5.

Figure S7: MALDI-TOF of 5.

Figure S8: ¹H NMR spectrum (400 MHz, DMSO-d₆) of LG-P2.

Figure S9: ¹³C NMR spectrum (400 MHz, DMSO-d₆) of LG-P2.

Figure S10: MALDI-TOF of LG-P2.

Figure S11: ¹H NMR spectrum (400 MHz, DMSO-d₆) of LG-P4.

Figure S12: ¹³C NMR spectrum (400 MHz, DMSO-d₆) of LG-P4.

Figure S13: MALDI-TOF of LG-P4.

Figure S14: Absorption spectra of LG-P2 and LG-P4.

Figure S15: Absorption spectra of LG-P1 and LG-P3 in DCM

Figure S16. Bode plot obtained from EIS measurement in dark (at 0.6V).

Figure S17. (*a*) *Transport time and* (*b*) *charge collection efficiency obtained from transient photo-voltage and photocurrent decay measurements.*

System	μg ^a (Debye)	HOMO ^a (eV)	LUMO ^a (eV)	Eg ^a	λ_{abs}^{b} (nm)	Os ^b	% of major molecular orbital contribution ^b
	· · /				. ,		
LG-P2	8.49	5.19	2.67	2.52	432	1.39	HOMO->L+1 (78%)
					376	0.00	H-1->LUMO (14%),
							HOMO->LUMO (73%)
					330	0.57	H-2->LUMO (92%)
					321	0.76	H-3->L+1 (11%), H-1->L+1
							(47%), HOMO->L+2 (23%)
					316	0.02	H-5->L+1 (54%), HOMO->L+4
					281	0.13	$H_{-1} > I + 1 (14\%) HOMO_{->} I + 2$
					201	0.15	(63%)
					273	0.00	H-2->I +1 (83%)
					273	0.00	$H_{-3} > I + 1 (13\%) H_{-1} > I + 2$
					271	0.17	(26%) H-1->L+3 (18%)
							HOMO -> L + 3 (19%)
					270	0.05	H-13->LUMO (54%), H-9-
							>LUMO (32%)
					269	0.00	H-11->L+2 (12%), H-10->L+2
							(12%)
LG-P4	11.95	5.34	3.20	2.14	486	1.95	H-1->LUMO (36%), HOMO-
							>LUMO (57%)
					360	0.04	H-2->LUMO (17%), H-1-
							>LUMO (23%), H-1->L+1
							(12%), HOMO->LUMO (11%),
							HOMO->L+1 (24%)
					340	0.27	H-1->LUMO (20%), H-1->L+1
							(32%), HOMO->LUMO (15%),
							HOMO->L+1 (17%)
					299	0.70	H-10->LUMO (11%), HOMO-
							>L+2 (60%)
					297	0.01	H-2->LUMO (41%)
					291	0.15	H-10->LUMO (60%)
					285	0.16	H-10->LUMO (60%)
					282	0.00	H-12->LUMO (63%), H-12-
					0.00	0.00	>L+1 (12%)
					269	0.32	H-1->L+3 (14%), HOMO->L+3
					0.00	0.07	(54%)
					266	0.06	H-2->L+1(1/%), H-1->L+1
							(18%), HOMO->L+1 (27%)

Table S1. Singlet excited state properties of dyes by B3LYP method and M06-2X function intetrahydrofuran solvent in PCM model.

^aTheoretical absorbance in nm, ^bOscillator strength, and ^cExcited state energy in eV.

Table S2. Comparison of J-V parameters obtained at one sun condition for the best performing DSSCs based on LG-P1 and LG-P3 dyes (previous work) with LG-P2 and LG-P4 dyes (current work)

	Dye	$V_{oc}(\mathbf{V})$	<i>J_{SC}</i> (mA cm ⁻²)	FF (%)	PCE (%)
Previous	LG-P1	0.47	1.52	41.1	0.29
work	LG-P3	0.73	3.81	70.5	1.96
This	LG-P2	0.74	2.71	70.5	1.41
work	LG-P4	0.50	1.82	47.3	0.43

Table S3. Photovoltaic data of LG-P2 and LG-P4 based device under 0.1 and 0.5 sun conditions.

Illumination intensity (mW/cm ²)	Dye	V _{oc} (V)	J _{sc} (mAcm ⁻²)	FF (%)	Efficiency (%)
50	LG-P2	0.69	1.30	74.2	1.33
	LG-P4	0.44	0.89	40.1	0.31
10	LG-P2	0.63	0.31	71.9	1.39
	LG-P4	0.24	0.24	33.8	0.20

Dye	V _{oc} (V)	J _{sc} (µAcm ⁻²)	FF (%)	Efficiency (%)
LG-P2	0.50	93.1	51.6	7.46
LG-P4	0.12	87.3	28.7	0.97

Table S4. Photovoltaic data of LG-P2 and LG-P4 based device under 1000 lux daylight LED illumination.