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I. COORDINATE SYSTEMS

Figure S1: 2D Brillouin zone in kx − ky plane (kz = 0) containing the Γ, M and K points. a and b are the lattice
vectors, while a* and b* are the reciprocal lattice vectors. Here, x and y directions show the orthogonal reciprocal
cartesian vectors kx and ky, respectively.

The orientation of the lattice vectors, reciprocal lattice vectors, wave vectors and high symmetry path are shown
in Fig. S1. For simplicity, we have added only the kx − ky plane containing k -points M, Γ and K, which are used for
computing spin textures and spin splitting. a and b are the lattice vectors, while a* and b* are the reciprocal lattice
vectors. The angles between lattice vectors and reciprocal lattice vectors are 120◦ and 60◦, respectively. Here, x and
y directions show the orthogonal wave vectors kx and ky, respectively. The Γ−K direction is symmetrically same as
kx, which leads to band structures computed along Γ−K coincides with kx. Similarly, Γ−M direction is same as ky.
We have used reciprocal cartesian basis i.e., kx and ky to compute spin textures and spin splitting. The lattice vector
c is perpendicular to a and b, pointing out of the page. The wave vector kz is perpendicular to kx and ky. The
reciprocal lattice vector c*, kz and Γ−A point along the same direction.
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II. HEXAGONAL DISTORTION UNDER STRAIN

Increasing the out-of-plane lattice parameter from 7.7 Å to 8.5 Å decreases the in-plane lattice parameters (i.e. a
and b) and accordingly, the c/a ratio also increases. Figure S2 shows the variation of a and c/a as a function of c.

Figure S2: Calculated in-plane lattice parameter (a) and the c/a ratio as a function of out-of-plane lattice parameter
(c).

III. COMPARISON BETWEEN PBE+SOC AND HSE06+SOC FUNCTIONALS

We have computed the band structures of R3m phase of KIO3 using semi-local Perdew-Burke-Ernzerhof (PBE)
and non-local Heyd-Scuseria-Ernzerhof (HSE06) exchange-correlation (εxc) functional with spin-orbit coupling (SOC).
Fig. S3a and S3b show the band structures calculated using PBE+SOC and HSE06+SOC, respectively. A slightly
indirect band gap of 2.24 and 3.27 eV is observed using PBE+SOC and HSE06+SOC, respectively, at k-point A.
Rashba spin splitting energy (δE), offset momentum (δk) along A-H and A-L directions, Rashba coefficient (αR) and
Dresselhaus coefficient (αD) at conduction band minimum (CBM) are compared using both functionals in Table S1.
Since Rashba parameters are comparable using both functionals, we have used PBE+SOC for further calculations
being more cost effective. In addition, we have also compared the spin textures computed using PBE+SOC with
HSE06+SOC (see Fig. S4). We have used uniformly space same dense k -grid for the comparison,. The spin textures
computed using both functionals are in close agreement, However, there is small inconsistencies near the center. This
can be removed by taking more dense k -grid near the center.



3

Figure S3: Band structure for R3m phase of KIO3 calculated using (a) PBE+SOC and (b) HSE06+SOC. The Fermi
energy is set to VBM.

Figure S4: (a)-(b) Spin textures of two lowest conduction bands and (c)-(d) two uppermost of valence bands around
the k -point A obtained using PBE+SOC. Similarly, [(e)-(h)] are the counterparts of [(a)-(d)] obtained using
HSE06+SOC.

TABLE S1: Rashba parameters for conduction band-splitting at k -point A for R3m phase.

εxc functional δE δk αR

(meV) (Å−1) (eVÅ)

PBE+SOC 27.3 0.047 1.16

HSE06+SOC 28.1 0.048 1.17
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IV. TWO-BAND k.p HAMILTONIAN

We aim at deriving the symmetry adapted two-band effective model Hamiltonian around k-point A. All those terms
are included which are invariant under symmetry group operation, i.e., O†H(k)O = H(k). Here, O represents the
symmetry group operations belonging to the group of wave vectors and time-reversal operations. It is noteworthy
that the considered k.p Hamiltonian includes only spin degrees of freedom and does not take into account the orbital
degrees of freedom. We have incorporated all the terms of the form knασβ , where kα and σβ are the crystal momenta and
Pauli spin matrices, respectively, along with the free particle Hamiltonian Ho(k). Since the time-reversal operator
transforms kα to −kα and σβ to -σβ , the terms which are odd in momentum space, are only allowed to hold the
time-reversal symmetry. Thus, the general expression of two-band k.p model can be written as

H(k) = Ho(k) +
∑

knασβ (1)

where α, β = x, y, z and n takes only odd positive integers. In this model, for the specific case of k-point A,
we have included upto cubic terms in crystal momentum, i.e., kxσx, kxσy, kxσz, kyσx, kyσy..., k3

zσz. Point group
symmetry at k-point A is C3v, which can be generated by trivial identity operation (E), three fold rotation about
z -axis (C3z=e

−iπ/3σz ) and mirror plane reflection in y-z plane (Mx=iσx) [1]. Transformation rules for σβ and kα
under C3v point group and time-reversal operations are summarized in Table S2. Thus, the constructed Hamiltonian

TABLE S2: The transformations of (σx, σy, σz) and (kx, ky, kz) with respect to the generators of the C3v point
group and time-reversal operator (T). Note that the generators C3z and Mx are enough to form the whole group of
C3v. Hence, only these generators with time-reversal T=iσyK operation (K is complex conjugation operator) are
considered to construct the k.p model for the k-point A.

C3z=e
−iπ/3σz Mx=iσx T=iσyK

kx -kx/2+
√

3ky/2 -kx -kx

ky -
√

3kx/2-ky/2 ky -ky

kz kz kz -kz

σx -σx/2+
√

3σy/2 σx -σx

σy -
√

3σx/2-σy/2 -σy -σy

σz σz -σz -σz

can be written as

HA(k) = Ho(k) +HSO (2)

where,

HSO = ασykx + βσxky + γσzf(kx, ky) (3)

and Ho(k) is free particle Hamiltonian. Here, α, β are the coefficients of linear terms and γ is the coefficient of
cubic term in SOC Hamiltonian. The linear Rashba and Dresselhaus Hamiltonian are given by αR(σxky − σykx) and
αD(σxky+σykx), respectively [2]. Here, αR and αD are linear Rashba and Dresselhaus coefficients, respectively, which
depend upon the properties of materials. The function f(kx, ky), which has cubic dependence on crystal momentum,
is given by

f(kx, ky) = (k3
x + k3

y)− 3(kxk
2
y + kyk

2
x) (4)

Writing the Hamiltonian in matrix representation

HA(k) =

(
E0(k)− γf βky − iαkx
βky − iαkx E0(k)− γf

)
(5)

where the E0(k) =
}2k2x
2mx

+
}2k2y
2my

is the energy eigenvalue of free particle Hamiltonian. On diagonalizing the Hamiltonian,

i.e, matrix in Eq. 5, gives
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E(k)± = E0(k)±
√
α2k2

x + β2k2
y + γ2f2(kx, ky) (6)

and the corresponding spinor eigenfunctions are given by

Ψ±k =
eik.r√

2π(ρ2
± + 1)

(
iαkx−βky

γf(kx,ky)∓ESO

1

)
(7)

where ρ2
± =

α2k2x+β2k2y
(γf(kx,ky)∓ESO)2 is normalization constant, ESO = | E(k) − E0(k) | is the absolute energy eigenvalue

of spin-orbit coupling Hamiltonian. Spin textures can be computed using the expectation values of spin operators.
Using the fact that Si = σi

2 , expectation values of Si (si=〈Si〉) are given by

{sx, sy, sz}± =
1

2
{〈σx〉±, 〈σy〉±, 〈σz〉±} = ± 1

Eso
{βky, αkx, γf(kx, ky)} (8)

where 〈σi〉±= 〈Ψ±k |σi |Ψ
±
k 〉 are the expectation values of the spin operators. Using Eq. 4 and 8, we can say that

the three-fold degeneracy of out of plane spin texture (Sz) is a consequence of cubic term f(kx, ky). The out of

plane spin component is zero, when Sz = 0 or f(kx, ky) = 0. The lines L1: ky = −kx, L2: ky = 2x −
√

3x and L3:

ky = 2x +
√

3x in the momentum space are the directions of out of plane spin component. Slope of the lines L1, L2

and L3 are -1, 2-
√

3 and 2+
√

3, respectively. Angle between two lines of slopes m1 and m2 can be computed using
θ = tan−1 | m1−m2

1+m1m2
|. It is straightforward to see that smaller angle between any two lines is 60◦, confirming the

existence of three-fold degeneracy.

The linear Rashba (LR) Hamiltonian is given by αR(σxky − σykx). The energy dispersion curves of LR splitted
bands are given by E± = ~2k2/2m ± αRk. This energy dispersion relation leads to shift in degenerate bands from
high symmetry point by the offset momentum (δk). For k -points Γ and A, kx = ky = 0 and kz is constant within the
kx − ky plane. Therefore, ~2k2

z/2m+ αRkz is taken to be constant and neglected in further calculations. Suppose we
are calculating αR in kx direction and δk is offset momentum along kx direction, then αR can be estimated as follows

E± = ~2k2
x/2m± αRkx (9)

E± have minimum energy (Emin) at offset momentum ∓δk. Rashba spin splitting energy (δE) is Emin - EA/Γ. Thus,
αR can be estimated by approximating δE and δk using DFT and given by

αR =
2δE

δk
(10)

Eq. 10 is used when there is pure LR effect.

Our considered SOC Hamiltonian (HSO = ασykx + βσxky + γσz[(k
3
x + k3

y) − 3(kxk
2
y + kyk

2
x)]) differs from LR

Hamiltonian. Thus, possibility of splitting coming from linear Dresselhaus (LD) and cubic terms (cubic in k) are also

taken in account. Energy eigenvalues corresponding to HSO are given by ESO(k) =
√
α2k2

x + β2k2
y + γ2f2(kx, ky),

where f(kx, ky) = (k3
x + k3

y) − 3(kxk
2
y + kyk

2
x). Initially, we have fitted the band structures along kx direction using

the relation ESO(k) =
√
α2k2

x + γ2k6
x. Since our considered range for DFT band structure is |kx| ≤ 0.125 Å

−1
,

|αkx| � |γk3
x|. Thus, we have estimated the values of α and β using the parametric fitting of DFT band structures

along kx and ky directions, respectively. γ is estimated using the z-component of spin texture since it comes from
cubic terms of HSO. Moreover, overall band fitting including the cubic terms is also compared with only linear terms
and are in well agreement. The HSO can be written as linear combinations of LR and LD, which is given by the
following expression

HSO(k) = HR +HD = ασykx + βσxky = (αR + αD)σykx + (αD − αR)σxky (11)

Using the α and β, we can estimate the values of αR and αD. Since αD ' 0, the splitting mainly comes from the LR
effect. Therefore, the αR calculated using the standard DFT ( 2δE

δk ) and band fitting (α−β2 ) are found to be consistent
with each other.
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V. FOUR-BAND k.p HAMILTONIAN

The four-band k.p Hamiltonian including spin and orbital degrees of freedom is derived to understand the splitting
around k -point A in R3c phase. The representation of point group appropriate to spin-1/2 particles is usually
determined by a group of double the order of the point group under consideration, known as the double group. The
point group of wave vector associated with the k -point A is C3v. The character table of double group corresponding to
C3v point group is given by Table S3. The number of conjugacy classes and irreducible representations (IR) (denoted
by Γi) are 6. The lowest conduction band is two-fold degenerate at k -point A (see Fig. 4 upper panel in main
manuscript) and corresponds to IR Γ3 (representing the orbital degree of freedom). The inclusion of SOC leads to the
splitted four bands around k -point A and degenerate at k -point A (see Fig. 4 lower panel in main manuscript). On
including SOC, lowest conduction bands at k -point A correspond to direct product of Γ3 and Γ4. IR Γ4 represents
the spin degrees of freedom. Using this, four-band k.p model is constructed employing the basis (|x↑〉, |x↓〉, |y↑〉,
|y↓〉). The transformation rules of (σx, σy, σz), (γx, γy, γz) and (kx, ky, kz) are given in Table S4 [3]. σi and γj are
both Pauli matrices signifying the spin and orbital degrees of freedom, respectively. We have used the Hamiltonian,
which is invariant under the operations C3z, Mx and T and is given by

HA(k) = α(k2
x + k2

y) + β(k2
x + k2

y)2 + δ(k2
x + k2

y)3 + η[(k2
x − k2

y)γz + 2kxkyγx] + [∆ + Λ(k2
x + k2

y) +K(k2
x + k2

y)2]γyσz

+[κ+ ζ(k2
x + k2

y)](kxσy − kyσx) + λkx(k2
x − 3k2

y)σz + ξkx(k2
x − 3k2

y)γz + ρ[(kxγx − kyγz)σx − ((kyγx − kxγz)σy)]

(12)

Here, α, β, δ, η, ∆, Λ, K, κ, ζ, Λ, ξ and ρ are coefficients signifying the strength of splitting. The terms having
coefficients α, β and δ are the effective mass terms. The term with coefficients η and ξ includes only orbital degrees of
freedom. Spin degrees of freedom are taken into account with the terms containing κ, ζ and λ. The remaining terms
with coefficients ∆, Λ, K and ρ couple the orbital and spin degrees of freedom. The coupling terms are responsible
for the novel spin textures observed around k -point A in R3c phase (see Fig. 4i-l in main manuscript). Alongside of
full four-band k.p Hamiltonian, we have constructed a modified Hamiltonian to understand the importance of orbital
degrees of freedom in four-band k.p Hamiltonian. The modified Hamiltonian excludes the terms containing the Pauli
matrices, which signify the orbital degrees of freedom from four-band k.p Hamiltonian (η = ξ = ∆ = Λ = K = ρ = 0).
Fig. 5d in main manuscript shows lowest conductions bands around k -point A using DFT and modified Hamiltonian.
The band structure (Fig. 5d in main manuscript) obtained using modified Hamiltonian deviates from the DFT band
structure. This signifies the importance of the full four-band k.p Hamiltonian. The Hamiltonian without the terms
containing orbital degrees of freedom cannot reproduce the band dispersion and spin textures observed around k -point
A.

TABLE S3: Character table of double group corresponding to C3v point group. Under E operation, the sign of
spinor gets reversed. Sx, Sy and Sz represent the axial vectors. The ↑ and ↓ represents the spin-up and spin-down
states of the spinor.

E E 2 C3 2EC3 3σv 3E σv Basis functions

Γ1 1 1 1 1 1 1 z

Γ2 1 1 1 1 -1 -1 Sz

Γ3 2 2 -1 -1 0 0 (x, y), (Sx, Sy)

Γ4 2 -2 1 -1 0 0 (↑,↓)

Γ5 1 -1 -1 1 i -i —

Γ6 1 -1 -1 1 -i i —
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TABLE S4: The transformations of (σx, σy, σz), (γx, γy, γz) and (kx, ky, kz) with respect to generators of the C3v

point group and time-reversal operator (T). Note that the generators C3z and Mx are enough to form the whole
group of C3v. Hence, only these generators with time-reversal operation T=iσyK (K is complex conjugation
operator) are considered to construct the k.p model for k-point A.

C3z=e
−iπ/3σz Mx=iσx T=iσyK

kx -kx/2+
√

3ky/2 -kx -kx

ky -
√

3kx/2-ky/2 ky -ky

kz kz kz -kz

σx -σx/2+
√

3σy/2 σx -σx

σy -
√

3σx/2-σy/2 -σy -σy

σz σz -σz -σz

γx -γx/2+
√

3γz/2 -γx γx

γy γy -γy -γy

γz -
√

3γx/2-γz/2 γz γz

VI. RASHBA PARAMETERS FOR SELECTED BULK FERROELECTRIC MATERIALS

In the Table S5, we have compared the Rashba coefficients (αR) of some well known bulk ferroelectric materials
with the bulk KIO3. Space group symmetry is also included with the material. For hafnia (HfO2), δE and δk are not
provided in the literature. All the values are reported upto respective significant Figures in the references and may
not be consistent with each other.

TABLE S5: Rashba spin splitting energy (δE), offset momentum (δk) and Rashba coefficient (αR) of some selected
bulk ferroelectric materials.

Material Space group δE (meV) δk (Å−1) αR (eVÅ) Reference

KIO3 R3m 23.2 0.053 1.16 This work

KIO3 R3c 14.8 0.047 0.78 This work

BiAlO3 R3c 7.34 0.04 0.39 [4]

BiAlO3 (along Z-R) P4mm 9.40 0.03 0.74 [4]

BiAlO3 (along A-Z) P4mm 8.62 0.03 0.65 [4]

LaWN3 Pna21 2.20 0.014 0.31 [5]

LaWN3 R3c 3.49 0.051 0.18 [5]

BiInO3 Pna21 130 0.19 1.91 [3]

PbTiO3 P4mm 5.45 0.50 0.51 [6]

HfO2 Pca21 - - 0.06 [7]

KMgSb P63mc 10 0.024 0.83 [8]

LiZnSb P63mc 21 0.023 1.82 [8]

β-(MA)PbI3 P4mm 12 0.015 1.5 [9]

β-(MA)SnI3 P4mm 11 0.011 1.9 [9]

GeTe R3m 227 0.09 4.8 [10]
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