## Supporting Information

## Tailoring Co-Doping of Cobalt and Nitrogen in Fullerene-Based Carbon Composite and Its Effect for Supercapacitive Performance

Bohong Jiang,<sup>a#</sup> Guangpu Zhang,<sup>b#</sup> Qin Tang,<sup>c</sup> Fancang Meng,<sup>a</sup> Dechun Zhou,<sup>a</sup> Wenli Zhao,<sup>a</sup> Wei Jiang,<sup>b</sup>\* Qingmin, Ji<sup>a</sup>\*

- <sup>*a*</sup> Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, 210094, China
- <sup>b</sup> National Special Superfine Powder Engineering Technology Research Center, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
- <sup>c</sup> School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, No. 1 Mid. Xiwang Avenue, Yancheng, China

<sup>#</sup> These authors contributed equally to this work

\*Corresponding author: jiqingmin@njust.edu.cn, superfine\_jw@126.com

## **Additional Data**



Fig. S1. SEM image of  $C_{60}$ -rods by LLIP process of  $C_{60}$ s in tolueneisopropyl alcohol solution.

Table S1. Structural features of  $C_{60}$  rods and  $C_{60}$ CoTMPP superstructures.

| Sample                                               | Morphology                           | Length (µm) | diameter (µm) |
|------------------------------------------------------|--------------------------------------|-------------|---------------|
| C <sub>60</sub> -rod (assembled structure from bare) | Long rod                             | 10          | 0.15-0.40     |
| C <sub>60</sub> CoTMPP-0.2                           | Short rods with polyprism structure  | 2.5         | 0.9           |
| C <sub>60</sub> CoTMPP-0.1                           | Microsphere with lamellar structures |             | 1.9           |
| C <sub>60</sub> CoTMPP-0.05                          | Short rod                            | 2.3         | 1.2           |



**Fig. S2**. SEM image of CoTMPP crystals formed in toluene-isopropyl alcohol solution.



Fig. S3. STEM images and the corresponding elemental mapping images of  $C_{60}CoTMPP$  crystals. (a)  $C_{60}CoTMPP-0.2$ , (b)  $C_{60}CoTMPP-0.1$ , (c)  $C_{60}CoTMPP-0.05$ .



Fig. S4. TEM images of  $C_{60}$  rod without CoTMPPs.



Fig. S5. FTIR spectra of  $C_{60}$ CoTMPP crystals and CoTMPP. (i)  $C_{60}$ CoTMPP-0.2, (ii)  $C_{60}$ CoTMPP-0.1, (iii)  $C_{60}$ CoTMPP-0.05, (iv)  $C_{60}$ -rods, and (v) CoTMPP.



Fig. S6. Raman spectra of  $C_{60}$ CoTMPP superstructures and CoTMPPs. (i)  $C_{60}$ CoTMPP-0.2, (ii)  $C_{60}$ CoTMPP-0.1, (iii)  $C_{60}$ CoTMPP-0.05, (iv)  $C_{60}$ -rods, and (v) CoTMPP.



Fig. S7. XRD patterns of  $CoN_4$  and  $Co_3O_4$  standard cards.



**Fig. S8**. TEM images of C<sub>60</sub>CoTMPP\_900s. (a), (d) C<sub>60</sub>CoTMPP-0.2\_900; (b), (e) C<sub>60</sub>CoTMPP-0.1\_900; (c), (f) C<sub>60</sub>CoTMPP-0.05\_900.



Fig. S9. The TGA weight loss curves of  $C_{60}CoTMPPs$ . (i)  $C_{60}CoTMPP$ -0.2, (ii)  $C_{60}CoTMPP$ -0.1, (iii)  $C_{60}CoTMPP$ -0.05, (iv)  $C_{60}$ -rods.



**Fig. S10**. (a) XPS Co 2p spectrum, (b) XPS N 1s spectrum, (c) XPS C 1s spectrum of  $C_{60}$ CoTMPP-0.2\_900; (d) XPS Co 2p spectrum (e) XPS N 1s spectrum, (f) XPS C 1s spectrum of  $C_{60}$ CoTMPP-0.05\_900.

**Table S2**. The comparison for the proportion of  $Co^{2+}$  and  $Co^{3+}$  in  $C_{60}CoTMPP_900s$  based on the relative area of each component peak in XPS Co 2p spectra, and the proportion of pyridine-N and Co-N in  $C_{60}CoTMPP_900s$  based on the relative area of each component peak in XPS N 1s spectra.

| Samples                         | Co <sup>3+</sup> | Co <sup>2+</sup> | Pyridine-N | Co-N   |
|---------------------------------|------------------|------------------|------------|--------|
| C <sub>60</sub> CoTMPP-0.2_900  | 44.24%           | 24.77%           | 27.35%     | 10.01% |
| C <sub>60</sub> CoTMPP-0.1_900  | 24.51%           | 49.86%           | 26.49%     | 31.85% |
| C <sub>60</sub> CoTMPP-0.05_900 | 26.24%           | 41.86%           | 25.53%     | 7.31%  |

**Table S3.** The Co amounts in  $C_{60}$ CoTMPPs and  $C_{60}$ CoTMPP\_900s by ICP measurements.

| Samples                 | C <sub>60</sub> CoTMPP<br>-0.05 | C <sub>60</sub> CoTMPP<br>-0.1 | C <sub>60</sub> CoTMPP<br>-0.2 | C <sub>60</sub> CoTMPP<br>-0.05_900 | C <sub>60</sub> CoTMPP<br>-0.1_900 | C <sub>60</sub> CoTMPP<br>-0.2_900 |
|-------------------------|---------------------------------|--------------------------------|--------------------------------|-------------------------------------|------------------------------------|------------------------------------|
| Co mass%<br>by ICP      | 0.26                            | 0.57                           | 1.26                           | 0.30                                | 0.71                               | 1.52                               |
| Theoretical<br>Co mass% | 0.38                            | 0.73                           | 1.34                           | -                                   | -                                  | -                                  |



Fig. S11. (a) Nitrogen isotherms and (b) pore size distributions of the  $C_{60}CoTMPP_900s$  (i)  $C_{60}CoTMPP-0.2_900$ , (ii)  $C_{60}CoTMPP-0.1_900$ , (iii)  $C_{60}CoTMPP-0.05_900$ .



**Fig. S12**. Nitrogen isotherms and pore size distribution (inset) of the C<sub>60</sub> \_900 (rod morphology).

| Sample                          | BET surface area<br>(m²/g) | Average<br>Pore size (nm) | Pore volume<br>(cm <sup>3</sup> /g) |
|---------------------------------|----------------------------|---------------------------|-------------------------------------|
| C <sub>60</sub> _900            | 287                        | 2.3                       | 0.059                               |
| C <sub>60</sub> CoTMPP-0.2_900  | 365                        | 3.9                       | 0.094                               |
| C <sub>60</sub> CoTMPP-0.1_900  | 496                        | 3.9                       | 0.143                               |
| C <sub>60</sub> CoTMPP-0.05_900 | 446                        | 3.9                       | 0.142                               |

Table S4. The porous features of  $C_{60}$ \_900 and various  $C_{60}$ CoTMPP\_900s.



Fig. S13. SEM images of the  $C_{60}CoTMPP-0.1_900$  on the electrode surface.



**Fig. S14**. (a) CV curve of  $C_{60}$ \_900 at the scan rate of 10 mV·s<sup>-1</sup>, (b) CD curve of  $C_{60}$ \_900 at 1A·g<sup>-1</sup>.



**Fig. S15**. (a) CV curve of  $C_{60}$ CoTMPP-0.1\_700 at the scan rate of 10 mV·s<sup>-1</sup>, (b) CD curve of  $C_{60}$ CoTMPP-0.1\_700 at 1A·g<sup>-1</sup>.



Fig. S16. CV curves of  $C_{60}$ CoTMPP-0.1\_900 at different scan rates (10–100 mV·s<sup>-1</sup>).

| Materials                                   | CD     |       | CV    |        | Def       |
|---------------------------------------------|--------|-------|-------|--------|-----------|
|                                             | (F/g)  | (A/g) | (F/g) | (mA/s) | Kel.      |
| C <sub>60</sub> nanosheet                   | -      | -     | 12.7  | 5      | 1         |
| MF C <sub>60</sub>                          | 141    | 0.5   | -     | -      | 2         |
| HT-FNT_2000(C <sub>60</sub> )               | -      | -     | 145   | 5      | 3         |
| HT-FNR_2000(C <sub>60</sub> )               | -      | -     | 132   | 5      | 3         |
| Fe-MFC <sub>60</sub> -150                   | 112.4  | 0.1   | -     | -      | 4         |
| FCL700 (C <sub>60</sub> )                   | 505.4  | 0.1   | -     | -      | 5         |
| MCFC-900 (C70)                              | 205    | 1     | 286   | 5      | 6         |
| HTFT_2000(C70)                              | -      | -     | 212   | 5      | 6         |
| HTFT_900(C <sub>70</sub> )                  | -      | -     | 26.4  | 5      | 7         |
| MC <sub>60</sub> @C-1.33                    | 213    | 0.5   |       |        | 8         |
| 200-HTC-800                                 |        |       | 2995  | 40     | 9         |
| C <sub>60</sub> FcC <sub>60</sub> -8IPA_900 | 129    | 1     | 102.5 | 10     | 10        |
| C <sub>60</sub> CoTMPP-0.1_900              | 416.31 | 1     | 296   | 10     | this work |

**Table S5.** The comparison of the supercapacitor performance with variousreported fullerene-derived carbon materials.

## **References** (in Table S5)

- L. K. Shrestha, Y. Yamauchi, J. P. Hill, K. Miyazawa, K. Ariga, J. Am. Chem. Soc., 2013, 135, 586-589.
- M. Benzigar, S. Joseph, H. Ilbeygi, D. H. Park, S. Sarkar, G. Chandra, S. Umapathy, S. Srinivasan, S. Talapaneni, A. Vinu, *Angew. Chem. Int. Edit.*, 2018, 57, 569-573.
- 3. L. K. Shrestha, R. G. Shrestha, Y. Yamauchi, J. P. Hill, T. Nishimura, K.

Miyazawa, T. Kawai, S. Okada, K. Wakabayashi, K. Ariga, Angew. Chem. Int. Edit., 2015, 54, 951-955.

- M. R. Benzigar, S. Joseph, G. Saianand, A. I. Gopalan, A. Vinu, *Micropor. Mesopor. Mat*, 2019, 285, 21-31.
- Z. Peng, Y. Hu, J. Wang, S. Liu, C. Li, Q. Jiang, J. Lu, X. Zeng, P. Peng, F. F. Li, Adv. Energy Mater., 2019, 9, 1802928.
- P. Bairi, S. Maji, J. P. Hill, J. H. Kim, K. Ariga, L. K. Shrestha, *J. Mater. Chem. A.*, 2019, 7, 12654-12660.
- P. Bairi, R. G. Shrestha, J. P. Hill, T. Nishimura, K. Ariga, L.K. Shrestha, *J. Mater. Chem. A.*, 2016, 4, 13899-13906.
- A. V. Baskar, A. M. Ruban, J. M. Davidraj, G. Singh, A. H. Al-Muhtaseb, J. M. Lee, J. Yi, A. Vinu, *Bull. Chem. Soc. Jpn.*, 2021, 94, 133-140.
- Y. Wu, J.-P. Cao, X.-Y. Zhao, Z.-Q. Hao, Q.-Q. Zhuang, J.-S. Zhu, X.-Y. Wang, X.-Y. Wei, *Acta*, 2017, 252, 397-407.
- 10. B. Jiang, Q. Tang, W. Zhao, J. Sun, R. An, T. Niu, H. Fuchs, Q. Ji, *CrystEngComm*, 2020, **22**, 6287-6294.