# Supporting Information: Mixed-dimensional organic-inorganic metal halide perovskites (OIMHP) based gas sensors with superior stability for NO<sub>2</sub> detection

The Duong<sup>a,†,\*</sup>, Alishba T. John<sup>b,†</sup>, Hongjun Chen<sup>c,\*</sup>, Huyen Pham<sup>d</sup>, Krishnan Murugappan<sup>b</sup>, Thanh

Tran-Phu<sup>b,e</sup>, Antonio Tricoli<sup>b,e</sup>, Kylie Catchpole<sup>a</sup>

<sup>a</sup>School of Engineering, The Australian National University, Canberra 2601, Australia

<sup>b</sup>Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, The Australian National University, Canberra 2601, Australia

<sup>c</sup>The University of Sydney Nano Institute (Sydney Nano) and School of Physics, University of Sydney,

Sydney 2006, Australia

<sup>d</sup>Department of Electronic Materials Engineering, Research School of Physics, The Australian National

University, Canberra 2601, Australia

eNanotechnology Research Laboratory, School of Biomedical Engineering, Faculty of Engineering, the

University of Sydney, Sydney 2006, Australia

<sup>†</sup>These authors contribute equally.

\*Corresponding Authors: the.duong@anu.edu.au; hongjun.chen@sydney.edu.au



Figure S1. Response and recovery time of  $\mathbf{a} - 3D$  and  $\mathbf{b} - 2D/3D$  perovskite gas sensors for the detection of 8 ppm of NO<sub>2</sub> gas.



Figure S2. Gas sensing characterization of the 2D/3D perovskite sensor to sub-ppm  $NO_2$  concentrations.



Figure S3. Comparison of the performance of the 3D perovskite-based sensor to 8 ppm  $NO_2$  when operating in the dark and under light with an applied bias of 1 V.



Figure S4. Cross-sectional SEM images of perovskite sensor devices  $\mathbf{a} - 3D$  device,  $\mathbf{b} - 2D/3D$  perovskite device with 10.0 mg/ml of the passivation precursor. The scale bar is 500 nm.



Figure S5. Sessor response of 2D/3D perovskite with different concentrations of the passivation solution for consecutive detection of 8 ppm of NO<sub>2</sub> gas  $\mathbf{a} - 5.0$  mg/ml and  $\mathbf{b} - 10.0$  mg/ml.



Figure S6. Short-term operation of 3D and 2D/3D perovskite sensors in a 40% RH environment for the consecutive detection of 8 ppm of  $NO_2$  gas.



**Figure S7.** Normalized sensor response of the 2D/3D perovskite sensor device with ambient stability over almost 2 months.

**Table S1.** Summary of recent reports on state-of-the-art room-temperature operating metal oxide -based  $NO_2$  gas sensors and comparison with this work.

| Materials                    | Required   | Sensor response                                                 | Limit of           | Response /       | Reference,          |
|------------------------------|------------|-----------------------------------------------------------------|--------------------|------------------|---------------------|
|                              | activation | $\left(\frac{I_{analyte}}{I_{air}} - 1\right)$ (NO <sub>2</sub> | Detection<br>(LOD) | Recovery<br>Time | year                |
|                              |            | concentration)                                                  |                    |                  |                     |
| Mixed 2D/3D                  | No         | 45.2 (8 ppm)                                                    | 0.2 ppm            | 5.7 s / 12.7 s   | This work           |
| perovskite                   |            |                                                                 |                    |                  |                     |
| SnO2-boron                   | No         | 119.6 (250 ppm)                                                 | 250 ppb            | 51 s/ 42 s       | <sup>1</sup> , 2021 |
| nitride nanotubes            |            |                                                                 |                    |                  |                     |
| CuO/rGO                      | No         | ~4 (5 ppm)                                                      | 50 ppb             | 6.8 s / not      | <sup>2</sup> , 2021 |
|                              |            |                                                                 |                    | mentioned        |                     |
| MoS2/ZnO                     | Light      | 0.91 (5 ppb)                                                    | 0.2 ppb*           | Not mentioned    | <sup>3</sup> , 2021 |
| ZnO/TiO <sub>2</sub> /Au nps | Light      | 7.5 (50 ppm)                                                    | Not mentioned      | 43 s / 50 s      | 4, 2021             |

| Fe <sub>2</sub> O <sub>3</sub> NRs/rGO  | No    | 23.8 (5 ppm)    | 1 ppm         | 15 s / not     | <sup>5</sup> , 2021  |
|-----------------------------------------|-------|-----------------|---------------|----------------|----------------------|
|                                         |       |                 |               | mentioned      |                      |
| macro-                                  | Light | 13.1 (400 ppb)  | 0.2 ppb       | 19 s / 32 s    | <sup>6</sup> , 2020  |
| /mesoporous ZnO                         |       |                 |               |                |                      |
| ZnO/TiO <sub>2</sub>                    | Light | 1.05 (5 ppm)    | Not mentioned | 26 s / 224 s   | 7, 2020              |
| SnO <sub>2</sub> @SnS <sub>2</sub> nano | Light | 4-6.5           | Not mentioned | 950 s / 1160 s | <sup>8</sup> , 2020  |
| structures                              |       | (0.2 ppm)       |               |                |                      |
| ZnO/polypeptides                        | Light | 4 – 13 (25 ppm) | Not mentioned | 11 – 19 s / 25 | <sup>9</sup> , 2020  |
|                                         |       |                 |               | - 31 s         |                      |
| ZnO                                     | Light | 0.2 (25 ppb)    | 1 ppb*        | >5 minutes /   | <sup>10</sup> , 2019 |
| nanoparticles                           |       |                 |               | not mentioned  |                      |
| rGO/CO <sub>3</sub> O <sub>4</sub>      | No    | 0.268 (5 ppm)   | 0.05 ppm*     | 1.5 minutes /  | 11, 2018             |
|                                         |       |                 |               | 40 minutes     |                      |
| CuO/rGO                                 | No    | 14 (1 ppm)      | 60 ppb        | 66 s / 34 s    | <sup>12</sup> , 2018 |
| rGO/ZnO                                 | No    | 0.484 (40 ppm)  | Not mentioned | Not mentioned  | <sup>13</sup> , 2018 |
| CuO platelets                           | No    | 5737.7 (40 ppm) | Not mentioned | 34 s / not     | <sup>14</sup> , 2018 |
|                                         |       |                 |               | mentioned      |                      |
| CuO-ZnO/rGO                             | No    | 0.629 (40 ppm)  | Not mentioned | 40 s / not     | <sup>15</sup> , 2018 |
|                                         |       |                 |               | mentioned      |                      |

\* theoretical calculation based on signal to noise ratio.

**Note S1.** Energy dispersive X-ray spectroscopy (EDS) measurements and analysis of 3D and 2D/3D perovskite films.

| Element | 3D perovskite | 2D/3D perovskite |
|---------|---------------|------------------|
|         | Atomic %      | Atomic %         |
| С       | 23.82         | 26.81            |
| N       | 18.89         | 19.54            |
| Br      | 3.98          | 3.78             |
| In      | 2.80          | 3.43             |
| Ι       | 34.18         | 32.72            |
| Cs      | 1.65          | 0.56             |
| РЬ      | 14.33         | 13.16            |
| Total:  | 100.00        | 100.00           |

### **3D** perovskite

## Electron Image 3











## Electron Image 4



1μm





### References

1. Sharma, B.; Sharma, A.; Myung, J.-h., Selective ppb-level NO2 gas sensor based on SnO2-boron nitride nanotubes. *Sensors and Actuators B: Chemical* **2021**, *331*, 129464.

2. Bai, H.; Guo, H.; Wang, J.; Dong, Y.; Liu, B.; Xie, Z.; Guo, F.; Chen, D.; Zhang, R.; Zheng, Y., A room-temperature NO2 gas sensor based on CuO nanoflakes modified with rGO nanosheets. *Sensors and Actuators B: Chemical* **2021**, *337*, 129783.

3. Kumar, R. R.; Murugesan, T.; Dash, A.; Hsu, C.-H.; Gupta, S.; Manikandan, A.; Anbalagan, A. k.; Lee, C.-H.; Tai, N.-H.; Chueh, Y.-L.; Lin, H.-N., Ultrasensitive and light-activated NO2 gas sensor based on networked MoS2/ZnO nanohybrid with adsorption/desorption kinetics study. *Appl. Surf. Sci.* **2021**, *536*, 147933.

4. Kwon, S.-H.; Kim, T.-H.; Kim, S.-M.; Oh, S.; Kim, K.-K., Ultraviolet light-emitting diodeassisted highly sensitive room temperature NO2 gas sensors based on low-temperature solutionprocessed ZnO/TiO2 nanorods decorated with plasmonic Au nanoparticles. *Nanoscale* **2021**, *13* (28), 12177-12184.

5. Tang, X.; Tian, C.; Zou, C., Highly sensitive and selective room-temperature NO2 gas sensor based on novel Fe2O3 nanorings/reduced graphene oxide heterojunction nanocomposites. *Optik* **2021**, *241*, 166951.

6. Xia, Y.; Zhou, L.; Yang, J.; Du, P.; Xu, L.; Wang, J., Highly Sensitive and Fast Optoelectronic Room-Temperature NO2 Gas Sensor Based on ZnO Nanorod-Assembled Macro-/Mesoporous Film. *ACS Applied Electronic Materials* **2020**, *2* (2), 580-589.

7. Choi, H.-J.; Kwon, S.-H.; Lee, W.-S.; Im, K.-G.; Kim, T.-H.; Noh, B.-R.; Park, S.; Oh, S.; Kim, K.-K., Ultraviolet Photoactivated Room Temperature NO2 Gas Sensor of ZnO Hemitubes and Nanotubes Covered with TiO2 Nanoparticles. **2020**, *10* (3), 462.

8. Liu, D.; Tang, Z.; Zhang, Z., Visible light assisted room-temperature NO2 gas sensor based on hollow SnO2@SnS2 nanostructures. *Sensors and Actuators B: Chemical* **2020**, *324*, 128754.

9. Feng, C.; Wen, F.; Ying, Z.; Li, L.; Zheng, X.; Zheng, P.; Wang, G., Polypeptide-assisted hydrothermal synthesis of ZnO for room temperature NO2 gas sensor under UV illumination. *Chem. Phys. Lett.* **2020**, *754*, 137745.

10. Casals, O.; Markiewicz, N.; Fabrega, C.; Gràcia, I.; Cané, C.; Wasisto, H. S.; Waag, A.; Prades, J. D., A Parts Per Billion (ppb) Sensor for NO2 with Microwatt ( $\mu$ W) Power Requirements Based on Micro Light Plates. *ACS Sensors* **2019**, *4* (4), 822-826.

11. Zhang, B.; Cheng, M.; Liu, G.; Gao, Y.; Zhao, L.; Li, S.; Wang, Y.; Liu, F.; Liang, X.; Zhang, T.; Lu, G., Room temperature NO2 gas sensor based on porous Co3O4 slices/reduced graphene oxide hybrid. *Sensors and Actuators B: Chemical* **2018**, *263*, 387-399.

12. Li, Z.; Liu, Y.; Guo, D.; Guo, J.; Su, Y., Room-temperature synthesis of CuO/reduced graphene oxide nanohybrids for high-performance NO2 gas sensor. *Sensors and Actuators B: Chemical* **2018**, *271*, 306-310.

13. Jyoti; Kanaujiya, N.; Varma, G. D., Highly selective room temperature NO2 gas sensor based on rGO-ZnO composite. **2018**, *1953* (1), 030039.

14. Oosthuizen, D. N.; Motaung, D. E.; Swart, H. C., In depth study on the notable roomtemperature NO2 gas sensor based on CuO nanoplatelets prepared by sonochemical method: Comparison of various bases. *Sensors and Actuators B: Chemical* **2018**, *266*, 761-772.

15. Jyoti; Varma, G. D., Synthesis of CuO-ZnO/rGO ternary composites for superior NO2 gas sensor at room temperature. *Materials Research Express* **2018**, *6* (3), 035011.