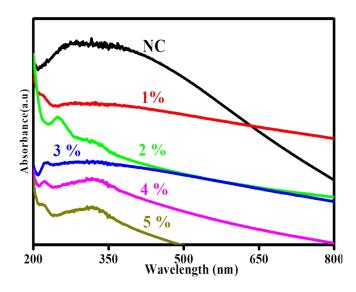
Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2022


Microwave scattering parameters of ferro-nano-carbon-composites for short range tracking countermeasures

Ashwini P. Alegaonkar a, Himangshu B. Baskey b, Prashant S. Alegaonkar c, 1

^a Department of Chemistry, Savitribai Phule Pune University, Pune 411 007, Maharashtra, India ^b RF and Microwave Engineering Laboratory, Department of Strategic Materials, DMSRDE-DRDO, GT Road, Kanpur 208013, Uttar Pradesh, India

^c Department of Physics, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151 401, Punjab, India

Supporting information

Figure S1: UV-visible spectra recorded for aqua dispersed NC and 1-5% FNC in a wavelength regime of 200-800 nm.

Table S1: Variations in elemental composition recorded using EDS for NC and 1–5% FNC composites.

Sample type	C at%	O at%	Ni at%
NC	99.02	00.98	-
1	80.11	27.22	00.67
2	42.68	49.58	05.74
3	47.43	38.17	14.40
4	54.84	26.80	20.36
5	35.30	40.04	24.66

¹ Corresponding author: Prashant S. Alegaonkar (e-mail: prashant.alegaonkar@cup.edu.in)

Table S2: Relationship between S_{ij} (in terms of shielding effectiveness) and power transmission in (PT) %.

S_{ij} (in dB)	PT (%)	S_{ij} (in dB)	PT (%)
0	100.00	12	06.25
1	81.00	13	05.00
2	62.80	14	04.00
3	50.00	15	03.13
4	40.00	16	02.50
5	31.60	17	02.00
6	25.00	18	01.56
7	20.00	19	01.20
8	16.00	20	01.00
9	12.50	25	00.32
10	10.00	30	00.10
11	07.90	_	_