pH Dependent Sensitization of Europium in a Hydrogen Bonded Three-

Dimensional Metal-Organic Compounds with (4⁹6⁶)₂(4⁴6²)₃ **Topology:**

Luminescence Titration and Time-resolved Studies

Pooja Daga,^a Sayani Hui,^b Sourav Sarkar,^b Prakash Majee,^a Debal Kanti Singha,^{a,b} Partha

Mahata^{b*} and Sudip Kumar Mondal^{a*}

^aDepartment of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal,

India. Email: sudip.mondal@visva-bharati.ac.in

^bDepartment of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India.

Email: parthachem@gmail.com

ELECTRONIC SUPPLEMENTARY INFORMATION

Table S1. Selected bond distances (Å) observed in $[Y_2(pydc)_6(H_2pip)_3] \cdot 20H_2O$ (pydc = 2,6-pyridine dicarboxylate, $H_2pip =$ diprotonated piperazine), 1.

Bond	Distances, Å	Bond	Distances, Å
Y(1)-O(1)	2.397(2)	Y(1)-O(3) #2	2.406(2)
Y(1)-O(1)#1	2.397(2)	Y(1)-N(1)	2.484(2)
Y(1)-O(1) #2	2.397(2)	Y(1)-N(1) #1	2.484(2)
Y(1)-O(3)	2.406(2)	Y(1)-N(1) #1	2.484(2)
Y(1)-O(3) #1	2.406(2)		

Symmetry transformations used to generate equivalent atoms: #1 -y+1,x-y+1,z #2 -x+y,-x+1,z

Angle	Amplitude (°)	Angle	Amplitude (°)
O(1)#1-Y(1)-O(1)#2	77.36(8)	O(3)-Y(1)-N(1)	64.41(7)
O(1)#1-Y(1)-O(1)	77.36(8)	O(3)#1-Y(1)-N(1)	133.68(8)
O(1)#2-Y(1)-O(1)	77.36(8)	O(3)#2-Y(1)-N(1)	71.34(7)
O(1)#1-Y(1)-O(3)	89.14(8)	O(1)#1-Y(1)-N(1)#1	64.21(7)
O(1)#2-Y(1)-O(3)	147.64(7)	O(1)#2-Y(1)-N(1)#1	76.31(7)
O(1)-Y(1)-O(3)	128.58(7)	O(1)-Y(1)-N(1)#1	137.09(7)
O(1)#1-Y(1)-O(3)#1	128.58(7)	O(3)-Y(1)-N(1)#1	71.34(7)
O(1)#2-Y(1)-O(3)#1	89.14(8)	O(3)#1-Y(1)-N(1)#1	64.41(7)
O(1)-Y(1)-O(3)#1	147.64(7)	O(3)#2-Y(1)-N(1)#1	133.68(8)
O(3)-Y(1)-O(3)#1	76.43(9)	N(1)-Y(1)-N(1)#1	119.915(6)
O(1)#1-Y(1)-O(3)#2	147.64(8)	O(1)#1-Y(1)-N(1)#2	137.09(7)
O(1)#2-Y(1)-O(3)#2	128.58(7)	O(1)#2-Y(1)-N(1)#2	64.21(7)
O(1)-Y(1)-O(3)#2	89.14(8)	O(1)-Y(1)-N(1)#2	76.31(7)
O(3)-Y(1)-O(3)#2	76.43(9)	O(3)-Y(1)-N(1)#2	133.68(8)
O(3)#1-Y(1)-O(3)#2	76.43(9)	O(3)#1-Y(1)-N(1)#2	71.34(7)
O(1)#1-Y(1)-N(1)	76.31(7)	O(3)#2-Y(1)-N(1)#2	64.41(7)
O(1)#2-Y(1)-N(1)	137.09(8)	N(1)-Y(1)-N(1)#2	119.916(6)
O(1)-Y(1)-N(1)	64.20(7)	N(1)#1-Y(1)-N(1)#2	119.915(6)

Table S2. Selected bond angles observed in $[Y_2(pydc)_6(H_2pip)_3] \cdot 20H_2O$ (pydc = 2,6-pyridine dicarboxylate, H₂pip = diprotonated piperazine), **1**.

Symmetry transformations used to generate equivalent atoms: #1 -y+1,x-y+1,z #2 -x+y,-x+1,z

Figure S1. Figure shows the assymptric unit in $[Y_2(pydc)_6(H_2pip)_3] \cdot 20H_2O$ (pydc = 2,6-pyridine dicarboxylate, $H_2pip =$ diprotonated piperazine), **1**. The hydrogen atoms in water molecules have not been located.

Figure S2. Figure shows the three-dimensional arrangement in *bc* in $[Y_2(pydc)_6(H_2pip)_3]$ ·20H₂O (pydc = 2,6-pyridine dicarboxylate, H₂pip = diprotonated piperazine), **1**. The hydrogen atoms in water molecules have not been located.

Figure S3. Powder XRD (Cu K α) patterns of (a) 1 (simulated from single-crystal X-ray data), (b) as synthesized 1 (experimental) and (c) as synthesized 1a (experimental).

Figure S4. FTIR spectrum of 1.

Figure S5. FTIR spectrum of 1a.

Table S3. The observed IF	R bands for compo	unds 1 and 1a.
---------------------------	-------------------	----------------

Bands	Wavenumber (cm ⁻¹)	Bands	Wavenumber (cm ⁻¹)
v _{asy. str} (aromatic N-H)	3387(m)	v _{sy. str} (carboxylate)	1435(s), 1372(s)
v _{str} (aromatic C-H)	3034(w)	v _{str} (C-N)	1574(s), 1280(s), 1214(m)
v _{asy.str} (sp ³ C-H)	2972(w)	$\delta(\text{aromatic C-H})_{\text{in plane}}$	1193(s), 1147(m), 1074(m)
υ _{sy.str} (sp ³ C-H)	2832(w), 2742(w)	$\delta(\text{aromatic C-H})_{\text{out of plane}}$	920(s). 875(w), 858(w), 825(w), 758(w)
v _{asy. str} (carboxylate)	1606(s)	δ(carboxylate) _{bending}	728(s), 695(w)

Figure S6. Thermogravimetric analysis (TGA) data of 1 and 1a, in a nitrogen atmosphere. The plot shows % weight loss of 1 and 1a with the increase in temperature.

Figure S7. SEM image of 1a.

Figure S8. Representative EDX plot of 1a. The figure demonstrates that Eu and Y are present in the molar ratio of \sim 1:4.

Figure S9. UV-Visible absorption spectrum of 1a and ligand-centered emission spectra of 1a.

Figure S10. Excitation and emission spectra of **1a**. The excitation wavelength was chosen at 280 nm for emission spectra and for the excitation spectra, emission was fixed at 616 nm.

Figure S11. Plot of luminescence intensity (monitored at 616 nm) *vs* pH. The plot indicates the partial reversible pH response of compound **1a** in the pH range of 2–7.

Figure S12. Luminescence lifetime decay observed at $\lambda_{ex} = 280$ nm and $\lambda_{em} = 616$ nm at different pH values.