Electronic Supplementary Information for:

Air-Grown Hybrid Copper (I) Halide Single Crystals: Structural Transformations

and Ultraviolet-Pumped Photoluminescence Applications

Zhexin Song, ^a Binyin Yu, ^a Lingqiang Meng, ^{*b} Guokui Liu^{*c} and Yangyang Dang ^{*a} ^aSchool of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, 273165, Qufu, P. R. China ^bMaterials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China ^cSchool of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China ^{*}Corresponding authors dyy@qfnu.edu.cn (Y. D.); lq.meng@siat.ac.cn (L. M.)

liuguokuihappy@163.com (G. L.).

Fig. S1. Photos of $Gua_6Cu_4I_{10}$ single crystal at sunlight (**A**), and UV-254 nm (**B**) condition. (**C**) Powder and single-crystal X-ray diffraction (PXRD) patterns of $Gua_6Cu_4I_{10}$. PLE and PL spectra of $Gua_6Cu_4I_{10}$ single crystal (**D**).

Fig. S2. Core level XPS spectra for (**A**) wide scan of Gua₃Cu₂I₅ single crystals, (**B**) C 1s, (**C**) N 1s, (**D**) I 3d, and (**E**) Cu 2p, fitted with peaks having an 80% Gaussian and 20% Lorentzian peak shape after applying background subtraction with Shirley function. Core level XPS spectra for (**F**) wide scan of Gua₄Cu₄Br₈ single crystals, (**G**) C 1s, (**H**) N 1s, (**I**) Cu 2p, and (**J**) Br 3d, fitted with peaks having an 80% Gaussian and 20% Lorentzian peak shape after applying background subtraction with Shirley function. **Fig. S3.** Spatial distributions of VBM (**A**) and CBM (**B**) of Gua₃Cu₂I₅ at Γ point calculated by DFT.

Fig. S4. TGA/DSC diagrams of $Gua_4Cu_4Br_8$ and $Gua_3Cu_2I_5$.

Fig. S5. Photos of Gua₃Cu₂I₅ at room temperature and 100 °C under the irradiation of UV-254nm

Fig. S6. Absolute PLQY of Gua₃Cu₂I₅ powders based on BaSO₄ as standard material

Fig. S7. PL decay lifetime of Gua₆Cu₄I₁₀ powders.

Fig. S8. Absolute PLQY of Gua₆Cu₄I₁₀ powders based on BaSO₄ standard material

Table S1. Crystal structure data for $Gua_4Cu_4Br_8$, $Gua_3Cu_2I_5$ and $Gua_6Cu_4I_{10}$.

Movie S1. Video of UV-pumped LEDs based on Gua₃Cu₂I₅ single crystals.

Fig. S1. Photos of $Gua_6Cu_4I_{10}$ single crystal at sunlight (**A**), and UV-254 nm (**B**) condition. (**C**) Powder and single-crystal X-ray diffraction (PXRD) patterns of $Gua_6Cu_4I_{10}$. PLE and PL spectra of $Gua_6Cu_4I_{10}$ single crystal (**D**).

Fig. S2. Core level XPS spectra for (**A**) wide scan of $Gua_3Cu_2I_5$ single crystals, (**B**) C 1s, (**C**) N 1s, (**D**) I 3d, and (**E**) Cu 2p, fitted with peaks having an 80% Gaussian and 20% Lorentzian peak shape after applying background subtraction with Shirley function. Core level XPS spectra for (**F**) wide scan of $Gua_4Cu_4Br_8$ single crystals, (**G**) C 1s, (**H**) N 1s, (**I**) Cu 2p, and (**J**) Br 3d, fitted with peaks having an 80% Gaussian and 20% Lorentzian peak shape after applying background subtraction with Shirley function.

Fig. S3. Spatial distributions of VBM (A) and CBM (B) of $Gua_3Cu_2I_5$ at Γ point calculated by DFT.

Fig. S4. TGA/DSC diagrams of Gua₄Cu₄Br₈ and Gua₃Cu₂I₅.

Fig. S5. Photos of Gua₃Cu₂I₅ at room temperature and 100 °C under the irradiation of UV-254nm

Fig. S6. Absolute PLQY of Gua₃Cu₂I₅ powders based on BaSO₄ standard material

Fig. S7. PL decay lifetime of $Gua_6Cu_4I_{10}$ powders.

Fig. S8. Absolute PLQY of $Gua_6Cu_4I_{10}$ powders based on $BaSO_4$ standard material.

Identification code	Gua4Cu4Br8	Gua ₃ Cu ₂ I ₅	Gua ₆ Cu ₄ I ₁₀
Empirical formula	$C_4H_{24}Br_8Cu_4N_{12}$	$C_{3}H_{18}Cu_{2}I_{5}N_{9}$	$C_6 C u_4 I_{10} N_{18}$
Formula weight/g·mol ⁻¹	1133.79	941.84	1847.40
Temperature/K	293(2)K	293(2)K	293(2)K
Wavelength/Å		0.71073	
Crystal color	Colorless	Colorless	Colorless
Crystal system	Monoclinic	Monoclinic	Orthorhombic
Space group	$P2_{1}/n$ (no.14)	C2/c (no.15)	$Cmc2_1$ (no.36)
a/Å	8.0772(2)	12.0317(9)	12.072(3)
b/Å	11.5386(4)	13.2491(10)	13.215(3)
c/Å	29.4561(11)	13.5695(10)	13.581(3)
$lpha/^{\circ}$	90.00	90.00	90.00
β/°	96.1640(10)	90.985(7)	90.00
$\gamma/^{\circ}$	90.00	90.00	90.00
Volume/Å ³	2729.42(15)	2162.8(3)	2166.6(9)
Crystal size (mm ³)	0.15 imes 0.12 imes 0.1	$0.15 \times 0.12 \times 0.1$	0.12×0.1×0.1
Z	4	4	2
Density/g·cm ⁻³	2.759	2.893	2.832
μ(mm ⁻¹)	14.804	9.105	9.087
F (000)	2112.0	1688.0	1616.0
GOF on F ²	1.079	1.111	1.087
Absolute Flack Factor			0.3(3)

 $\textbf{Table S1.} Crystal structure data for Gua_4Cu_4Br_8, Gua_3Cu_2I_5 and Gua_6Cu_4I_{10}.$

Absorption correction	Semi-empirical from equivalents			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	6789/0/255	2204/0/91	2789/64/105	
$\mathbf{R}_{1}, w\mathbf{R}_{2} \left[\mathbf{I} > 2\sigma \left(\mathbf{I} \right) \right]$	0.0397, 0.0855	0.0638, 0.1954	0.0593, 0.1295	
R_2 , wR_2 (all data)	0.0670, 0.0970	0.0716, 0.1997	0.0797, 0.1416	
Min/Max Δρ /eÅ-3	-1.35/0.78	-2.48/3.17	-2.84/2.74	
CCDC	2113135	2113134	2113136	