Supporting Information:

Mechanical strain, thermal and pressure effects on the absorption edge of an organic charge-transfer polymer for flexible photovoltaics and sensors

Paulina Ratajczyk, a Andrzej Katrusiak, a Krzysztof A. Bogdanowicz, Wojciech Przybył, Piotr Krysiak, Anna Kwak and Agnieszka Iwan*

α Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland, *e-mail: katran@amu.edu.pl katran@amu.edu.pl

b Military Institute of Engineer Technology, Obornicka 136, 50-961 Wroclaw, Poland, *e-mail: iwan@witi.wroc.pl

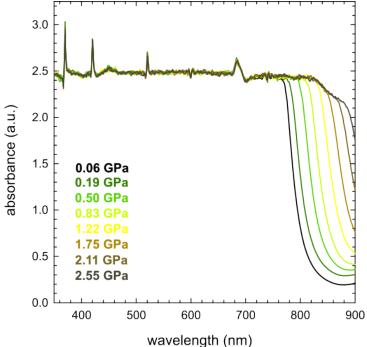
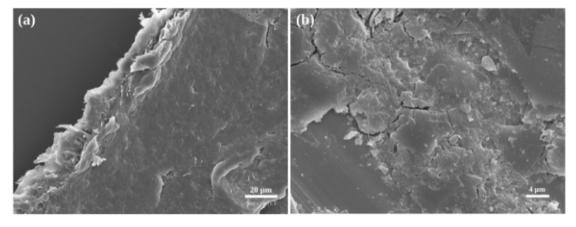
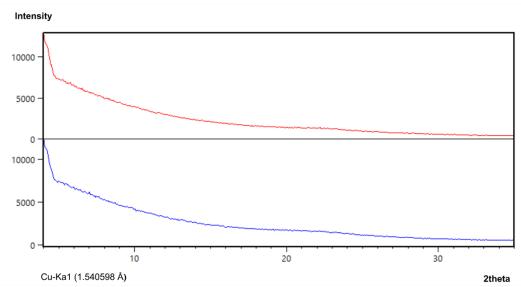




Figure S1. High-pressure absorbance spectra for a thin layer prepared by pressing PTB7 into a diamond culet.

Figure S2. Scanning electron microscopy (SEM) photos of a (a) thin layer formed after pressing PTB7 into a diamond culet and (b) after evaporation of the dichloromethane.

Figure S3. PXRD collected for the sample of PTB7 (as delivered, top) and for the film of PTB7 obtained by evaporating the 1,2-dichlorobenzene solution (bottom). The measurements were performed with $CuK\alpha 1$ line of 1.540598 Å.

 Table S1.
 Tensile test performance for PTB7 single and double layer (thickness 0.17mm) over PET/ITO.

Sample	Sample No.	Cross-section area [mm²]	Stress at break [MPa]	Elongation at break [%]
PET/ITO/PTB7	1	1.58	85.6	73
(single layer)	2	1.75	97.6	131
	3	1.76	87.2	92
	4	1.61	101.8	158
PET/ITO/PTB7	5	1.67	143.4	127
(double layer)	6	1.62	162.1	123
	7	1.83	162.4	108
	8	1.72	152.0	92
	9	1.69	157.0	104