Supporting Information

A Facile Room-Temperature Fabrication of Silver-Platinum Nanocoral Catalyst Towards Hydrogen Evolution And Methanol Electro-Oxidation

*Hau Quoc Pham,1,2 and Tai Thien Huynh3,**

*¹*Future Materials & Devices Lab., Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Viet Nam

*²*The Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam

*³*Ho Chi Minh City University of Natural Resources and Environment (HCMUNRE), Ho Chi Minh City, 700000, Viet Nam

*Corresponding author. E-mail: httai@hcmunre.edu.vn

EXPERIMENTAL DETAILS

Chemical reagents

All reagents were commercially purchased and used without further purification. Hexachloroplatinic acid (H₂PtCl₆.xH₂O; ~38% Pt), silver nitrate (AgNO₃; \geq 99.0%), and Nafion 117 solution (~5%) were purchased from Sigma-Aldrich, USA. Formic acid (HCOOH; 98-100%), ethanol absolute (C₂H₅OH; 99.5%), sulfuric acid (H₂SO₄, 95-97%); and methanol (CH3OH) were obtained from Merck, Belgium.

Material Characterizations

X-ray diffraction (XRD) analysis was performed on a D2 PHASER (Bruker, Germany) using Cu K_α radiation source ($\lambda = 1.5418$ Å) in the 20 range from 20^o to 80^o at a step size of 0.02^o to collect the structure information of as-obtained catalysts. X-ray photoelectron spectroscopy (XPS) was analyzed on PHI 5000 VersaProbe (Ulvac-PHI) equipped with monochromator Al K_{α} (hv = 1486.6 eV) X-ray source at a 10 mV current and 15 kV anode voltage. The morphology and size of the AgPt nanocatalyst were recorded through transmission electron microscopy (TEM) and HR-TEM images, which were carried out on a JOEF-JEM 2100F device at 200 kV. Before TEM measurement, the sample was dispersed in ethanol to generate a homogeneous suspension, which was cast on carbon film-coated copper microgrids. The coherent length $(D_(hkl))$ was estimated by Debye-Scherrer's formula $(Eq.(1))^{1-3}$:

$$
D_{(hkl)} = \frac{k\lambda}{\beta \cos \theta} \tag{Eq. (1)}
$$

where: $D_{(hkl)}$ is average crystallite size (nm); k is Scherrer constant (0.94), λ is the wavelength of the incident X-ray ($\lambda = 15406$ Å); β is the line broadening at half the maximum intensity (FWHM), and θ is the Bragg angle.

The lattice space $(d_(hkl))$ was calculated by Bragg's law (Eq. (2))^{2, 3}

$$
d_{(hkl)} = \frac{\lambda}{2\sin\theta}
$$
 (Eq. (2))

where: $d_{(hkl)}$ is lattice space (Å); λ is the wavelength of the incident X-ray ($\lambda = 15406$ Å); θ is the Bragg angle.

Electrochemical Properties

Electrochemical tests were performed on a CHI 660 C Electrochemical Workstation (CH Instruments Inc., USA) connected with a three-electrode electrochemical cell consisting of a glassy carbon electrode (GCE), platinum wire, and Hg/HgO electrode, which were used as a working electrode, a count and reference electrodes, respectively. In terms of the catalyst ink fabrication, 1.7 mg of catalyst was distributed in a mixture of 20 µL of Nafion and 180 µL of ethanol absolute, followed by the ultrasonication of 30 min to generate a homogeneous ink. To coast the obtained catalyst ink, the GCE surface was polished by $0.5 \mu m A₂O₃$ and washed by absolute ethanol and purged water, and then 2.5 µL of catalyst ink was drop-cast onto the GCE surface and dried naturally, followed by scanning in N₂-saturated 0.5 M H₂SO₄ at 50 mV s⁻¹ for 100 cycles to get an active working electrode. The electrochemical surface area (ECSA) of investigated catalyst was estimated from hydrogen adsorption/desorption region in cyclic voltammetry (CV) in N₂-saturated 0.5 M H₂SO₄ aqueous electrolyte at 25 mV s⁻¹ scan rate. The electrocatalytic performance towards hydrogen evolution reaction (HER) of catalysts was measured by linear sweep voltammetry (LSV) in N₂-saturated 0.5 M H_2SO_4 at a 1 mV s⁻¹ scan rate. Electrochemical impedance spectroscopy (EIS) of electrocatalysts was collected at an amplitude of 5 mV in the frequency range from 0.1 to $10⁵$ Hz. In addition, the electrocatalytic activity towards methanol electro-oxidation reaction (MOR) of as-prepared catalyst was examed in N₂-saturated 0.5 M H₂SO₄ + 1.0 M CH₃OH aqueous solution by CV and LSV tests. CO-stripping test was performed in 0.5 M $H₂SO₄$ electrolyte, which was purged with nitrogen gas for 15 min and then CO gas bubbled for 45 min at 0.05 V_{RHE} . In terms of the electrocatalytic

stability, chronoamperometry (CA) at fixed 0.7 V_{RHE} and accelerated durability test (ADT) with the 2000-cycling test were also used. For comparison, the commercial Pt NPs/C (E-TEK) was used as a benchmark catalyst. All potential in this work was converted to a reversible hydrogen electrode (RHE) through the Nernst equation.

Electrochemical surface area (ECSA) calculation

The electrochemically surface area (ECSA) of Pt-based electrocatalyst was calculated from hydrogen adsorption/desorption regions in cyclic voltammetry (CV) curve in N₂-saturated 0.5 M $H₂SO₄$ electrolyte according to Eq. (3) ⁴⁻⁶:

$$
ECSA = \frac{Q_H}{0.21 * [Meta]}
$$
 (Eq.

(3))

where Q_H (mC cm⁻²) represents the coulombic charge for hydrogen adsorption; 0.21 (mC cm⁻ ²) is the charge required to oxidize an H_2 monolayer, and [Metal] is the loaded catalyst metal onto the working surface electrode (0.13 mg cm⁻²). Q_H can be estimated by Eqs. (4) ^{7, 8}:

$$
Q_{H} = \frac{1}{v A} \int I_{(v)} dV
$$
 (Eq.

(4))

Where I (A) represents the peak current; V (V) is the peak potential; ν (mV s⁻¹) denotes the scanning rate, which is 25 mV s⁻¹ in this experiment; and A (cm⁻²) is the GCE's geometric area, which is 0.1964 cm⁻².

Turnover frequency (TOF) calculation

The pre-site TOF value was calculated according to the following Eqs. $(5-8)^{9-12}$

$$
TOF(H2 s-1) = \frac{\# total hydrogen turnovers per geometric area}{\#active sites per geometric area}
$$
 (Eq.

(5))

The number of total hydrogen turnovers was estimated from the current density extracted from

the LSV polarization curves according to:

total hydrogen turnovers = (
$$
|j| \frac{mA}{cm^2}
$$
) $\left(\frac{1C s^{-1}}{1000 mA} \right) \left(\frac{1 mole^{-1}}{96485.3 C} \right) \left(\frac{1 mol}{2 mole^{-1}} \right) \left(\frac{6.022*10^{23} molecules H_2}{1 mol H_2} \right)$ (Eq. (6))

$$
=3.12*10^{15}\frac{\text{H}_2 \text{s}^3}{\text{cm}^2}\text{per}\frac{\text{mA}}{\text{cm}^2}
$$

The number of active sites in Pt-based catalysts was calculated from the mass loading on the working electrode, the Pt contents, and the Pt atomic weight, assuming each Pt center accounts for one active site:

$$
\# \text{active sites} = \left(\frac{\text{catalyst loading per geometric area} (x \text{ g cm}^{-2})^* \text{Pt wt\%}}{\text{Pt M}_w (\text{g mol}^{-1})}\right) \left(\frac{6.022^* 10^{23} \text{Pt atoms}}{1 \text{ mol Pt}}\right) (\text{Eq. (7)})
$$
\n
$$
= \left(\frac{0.13^* 10^{3} \text{ g cm}^{-2} \times 8.51 \text{ wt\%}}{195.084 \text{ g mol}^{-1}}\right) \left(\frac{6.022^* 10^{23} \text{ Pt atoms}}{1 \text{ mol Pt}}\right) = 3.41^* 10^{16} \text{ Pt sites per cm}^2
$$

Finally, the current density from the LSV polarization curve can be converted into TOF values according to:

TOF (H₂ s⁻¹) =
$$
\left(\frac{3.12 * 10^{15}}{3.41 * 10^{16}} * |j|\right) = 0.091 * |j|
$$
 (Eq.

(8))

Tafel Slope Calculation for MOR

The kinetic parameter of electrocatalyst for MOR was calculated by Tafel equation (9)^{13, 14}

$$
\eta = \text{a} + \text{blogi} = \frac{2.3RT}{\text{an}F} \log i_0 + \frac{2.3RT}{\text{an}F} \log i \tag{Eq. (9)}
$$

where R is gas constant, T (K) represents the absolute temperature, α is the charge transfer coefficient, F is the Faraday constant, i_0 (mA cm⁻²) is the exchange current density.

Results and Discussion

Table S1. XRD determined structural parameters of AgPt NCs/C and Pt NPs/C (E-TEK).

(a)Calculation from Bragg's law.

(b)Calculation from Debye-Scherrer's equation.

Catalysts	Overpotential ^(a) @	Tafel Slope ^(a)	
	10 mA cm ⁻²	mV dec ⁻¹	Ref.
AgPt NCs/C	16.61	19.05	This work
Pt NPs/C (E-TEK)	21.30	21.37	This work
S-doped AuPdPt NWs	12	17.7	15
Commercial Pt NPs/C	29	25.2	15
Pt/PtTe ₂ /NiCoTe ₂ /NPFC HFSs	36	23	16
$Pt_{68}Ag_{32}NDs$	51	39	17
Pt/GNs	25	33	18
Pt/PtTe _x NRs	44	23	19
$Pt/NBF-Res_2/Mo_2CT_x$	29	24	$20\,$
AgPt HANS	69	40	21
Pt ₁ /Co ₁ NCs	4.15	17	11
Pt-PMo/ZIF-67-800	26	30	22
Pt_8Co	26.1	34	23
Pt_4Co_1 hollow sphere	14.8	27.45	24
$Pt/MoS_2/CF_s$	5	53.6	25
$Pt_{0.44}V/3DHPNG/Au_{pla}/GCE$	12	26.8	26
PtNPs/3DHPNG/Aupla/GCE	10	25.2	26
PtAg NFs/rGO	55	31	27
PtNi/Pt DNPs	21	23	28

Table S2. A comparison of HER activity of recently reported catalysts in acidic electrolytes.

(a)Calculation from LSV curves in N2-saturated 0.5 M H2SO⁴ aqueous solution.

Catalysts	ECSA ^(a)	Current density(b)	$I_f/I_b^{(b)}$	Ref.
	$m^2 g_{\text{Meta}}^{-1}$	mA cm ⁻²		
AgPt NCs/C	81.36	22.65	1.47	This work
Pt NPs/C (E-TEK)	70.83	20.91	0.85	This work
$Pt_{9.8}Ru_{1}/PANI/CNTs$		26.01	1.36	29
$Pt_1Pb_2Ru_{0.5}$	43	9.83	1.52	30
Commercial Pt NPs/C		7.29	0.65	30
o-PtPd/rGO		22.76	1.56	31
Pt/AC-MWCNT	55.8	27.02	0.92	32
Pt/C -OT-4	78.66	17.48	1.82	33
PtRu/rGO-2	69.21	17.9	1.90	34
Pt ₂ Ir/MWCNT	85.30	9.72	1.10	35
$PtO_x/CoO_y(Q)$ OC-700	10.9	24.387		36

Table S3. A comparison of MOR performance of various Pt-based catalyst in acidic media.

(a)Calculation from CV curves in N2-saturated 0.5 M H2SO⁴ aqueous solution. (b)Calculation from CV curves in N₂-saturated 0.5 M H₂SO₄ + 1 M CH₃OH aqueous solution.

Figure S1. (a) TEM and (b) HR-TEM images of the AgPt NCs/C catalyst after CA test.

Table S4. The MOR performance of electrocatalyst before and after 2000-cycling tests.

^(a)Calculation from CV curves in N₂-saturated 0.5 M H₂SO₄ + 1 M CH₃OH solution before and *after 2000 cycling test.*

References

1. Bhalothia, D.; Fan, Y.-J.; Lai, Y.-C.; Yang, Y.-T.; Yang, Y.-W.; Lee, C.-H.; Chen, T.-Y., *Nanomaterials* **2019,** *9* (7), 1003.

2. Huang, T.-H.; Bhalothia, D.; Dai, S.; Yan, C.; Wang, K.-W.; Chen, T.-Y., *Sustain. Energy Fuels* **2021,** *5* (11), 2960-2971.

3. Vargas-Ordaz, M.; Velázquez-Hernández, I.; Bañuelos, J. A.; Ledesma-García, J.; Álvarez-Contreras, L.; Arjona, N.; Guerra-Balcázar, M., *Mater. Today Energy* **2019,** *14*, 100335.

4. Zhang, C.; Zhang, Y.; Xiao, H.; Zhang, J.; Li, L.; Wang, L.; Bai, Q.; Liu, M.; Wang, Z.; Sui, N., *Colloids Surf. A Physicochem. Eng. Asp.* **2021,** *612*, 125960.

5. Huang, X.; Chen, Y.; Zhu, E.; Xu, Y.; Duan, X.; Huang, Y., *J. Mater. Chem. A* **2013,** *1* (46), 14449-14454.

6. Zhang, G.; Yang, Z.; Zhang, W.; Hu, H.; Wang, C.; Huang, C.; Wang, Y., *Nanoscale* **2016,** *8* (5), 3075-3084.

7. He, Y.; Chen, W.; Li, X.; Zhang, Z.; Fu, J.; Zhao, C.; Xie, E., *ACS Nano* **2013,** *7* (1), 174.

8. Li, N.; Tang, S.; Pan, Y.; Meng, X., *Mater. Res. Bull.* **2014,** *49*, 119-125.

9. Benck, J. D.; Chen, Z.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F., *ACS Catal.* **2012,** *2* (9), 1916-1923.

10. Kibsgaard, J.; Jaramillo, T. F., Molybdenum Phosphosulfide: An Active, Acid-Stable, Earth-Abundant Catalyst for the Hydrogen Evolution Reaction. *Angew. Chem. Int. Ed.* **2014,** *53* (52), 14433-14437.

11. Chen, Y.; Ding, R.; Li, J.; Liu, J., *Appl. Catal. B: Environ.* **2022,** *301*, 120830.

12. Fei, H.; Dong, J.; Arellano-Jiménez, M. J.; Ye, G.; Dong Kim, N.; Samuel, E. L. G.; Peng, Z.; Zhu, Z.; Qin, F.; Bao, J.; Yacaman, M. J.; Ajayan, P. M.; Chen, D.; Tour, J. M., *Nat. Commun.* **2015,** *6* (1), 8668.

13. Huang, T.; Mao, S.; Zhou, G.; Zhang, Z.; Wen, Z.; Huang, X.; Ci, S.; Chen, J., *Nanoscale* **2015,** *7* (4), 1301-1307.

14. Lee, S.; Kim, H. J.; Choi, S. M.; Seo, M. H.; Kim, W. B., *Appl. Catal. A: Gen* **2012,** *429- 430*, 39-47.

15. Zhang, X.; Wang, S.; Wu, C.; Li, H.; Cao, Y.; Li, S.; Xia, H., *J. Mater. Chem. A* **2020,** *8* (45), 23906-23918.

16. Yi, M.; Hu, S.; Lu, B.; Li, N.; Zhu, Z.; Huang, X.; Wang, M.; Zhang, J., *J. Alloys Compd.* **2021,** *884*, 161042.

17. Chen, S.-S.; Nan, L.-J.; Feng, J.-J.; Zhang, L.; Fang, K.-M.; Luo, X.; Wang, A.-J., *Int. J.*

Hydrog. Energy **2018,** *43* (12), 6096-6106.

18. Yan, X.; Li, H.; Sun, J.; Liu, P.; Zhang, H.; Xu, B.; Guo, J., *Carbon* **2018,** *137*, 405-410.

19. Chen, J.; Qin, M.; Ma, S.; Fan, R.; Zheng, X.; Mao, S.; Chen, C.; Wang, Y., *Appl. Catal. B: Environ.* **2021,** *299*, 120640.

20. Yi, M.; Li, N.; Lu, B.; Li, L.; Zhu, Z.; Zhang, J., *Energy Storage Mater.* **2021,** *42*, 418-429. 21. Shao, F.-Q.; Feng, J.-J.; Yang, Z.-Z.; Chen, S.-S.; Yuan, J.; Wang, A.-J., *Int. J. Hydrog. Energy* **2017,** *42* (39), 24767.

22. Wang, S.; Cao, Y.; Jia, W.; Lu, Z.; Jia, D., *Appl. Catal. B: Environ.* **2021,** *298*, 120579.

23. Hu, J.; Fang, C.; Jiang, X.; Zhang, D.; Cui, Z., *Inorg. Chem. Front.* **2020,** *7* (22), 4377.

24. Wei, M.; Huang, L.; Huang, S.; Chen, Z.; Lyu, D.; Zhang, X.; Wang, S.; Tian, Z. Q.; Shen, P. K., *J. Catal.* **2020,** *381*, 385-394.

25. Hou, D.; Zhou, W.; Liu, X.; Zhou, K.; Xie, J.; Li, G.; Chen, S., *Electrochim. Acta* **2015,** *166*, 26-31.

26. Zhang, Y.; Liu, L.; Sun, C.; Du, Y.; Zhou, Y.; Xie, Q., *J. Alloys Compd.* **2021,** *888*, 161564.

27. Liu, Q.; He, Y.-M.; Weng, X.; Wang, A.-J.; Yuan, P.-X.; Fang, K.-M.; Feng,J.-J., *J. Colloid Interface Sci.* **2018,** *513*, 455-463.

28. Li, L.; Wang, S.; Xiong, L.; Wang, B.; Yang, G.; Yang, S., *J. Mater. Chem. A* **2019,** *7* (20), 12800-12807.

29. Zhang, X.; Ma, J.; Yan, R.; Cheng, W.; Zheng, J.; Jin, B., *J. Alloys Compd.* **2021,** *867*, 159017.

30. Liao, W.; Zhou, S.; Wang, Z.; Liu, F.; Cao, J.; Wang, Q., *Fuel* **2022,** *308*, 122073.

31. Yang, C.; Zhang, D.; Zhao, W.; Cui, M.; Liang, R.; Ou, Q.; Zhang, S., *J. Alloys Compd.* **2020,** *835*, 155334.

32. Bhuvanendran, N.; Ravichandran, S.; Peng, K.; Xu, Q.; Khotseng, L.; Su, H., *Appl. Surf. Sci.* **2021,** *565*, 150511.

33. Chang, X.; Dong, F.; Yang, S.; Tang, Z.; Zha, F., *Int. J. Hydrog. Energy* **2019,** *44* (39), 21559-21568.

34. Shi, Y.; Zhu, W.; Shi, H.; Liao, F.; Fan, Z.; Shao, M., *J. Colloid Interface Sci.* **2019,** *557*, 729-736.

35. Bhuvanendran, N.; Ravichandran, S.; Zhang, W.; Ma, Q.; Xu, Q.; Khotseng, L.; Su, H., *Int. J. Hydrog. Energy* **2020,** *45* (11), 6447-6460.

36. Ding, C.; Dong, F.; Tang, Z., *J. Electroanal. Chem.* **2021,** *895*, 115487.