Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2022

Strong and pure red-emitting Eu³⁺-doped phosphor with excellent thermal stability for

warm WLEDs

Liang Zhang, ^{a, b} Yonghui Xu, ^{a, b} Xiudi Wu, ^{a, b} Shuwen Yin, ^a and Hongpeng You^{a, b, c *}

^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied

Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China

^b University of Science and Technology of China, Hefei 230026, P. R. China

^c Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China

*Corresponding author. Fax: +86 431 85698041. E-mail address: hpyou@ciac.ac.cn (H.P.

You).

Fig. S1 Rietveld refinements of the LiYO2: xEu^{3+} with x = 0.25, 0.30, 0.35, 0.40 (a-d), respectively.

Fig. S2 CIE coordinates profile of $LiYO_2$:xEu³⁺ (x = 0.15-0.40) samples, the inset pictures are the

phosphors under the 365 nm blue light excitation in dark background.

Fig. S3 Emission spectrum of the LY:0.20Eu³⁺ sample and the LY:0.20Eu³⁺ sample placed in the air for two weeks

х	a, Å	b, Å	c, Å	V, Å ³	Rwp,%	Rp,%	X ²
0.15	6.167667	6.185144	6.264522	208.924	5.68	4.45	2.014
0.20	6.173124	6.180048	6.273077	209.111	5.46	4.16	2.351

Table S1 Refined structural data of LiYO₂:xEu³⁺ samples.

0.25	6.191825	6.177590	6.298832	210.275	4.86	3.77	1.822
0.30	6.208351	6.175650	6.319654	211.283	5.24	4.06	1.955
0.35	6.219486	6.174877	6.334198	212.028	5.47	4.25	1.885
0.40	6.227838	6.169772	6.344096	212.327	5.06	3.77	2.082

Table S2 the Y-O bond length of $LiYO_2:xEu^{3+}$ samples

х		Y-O1 (Å)			Y-O2 (Å)		Average
							(Å)
0.15	2.22612	2.24311	2.41807	2.23319	2.23491	2.42366	2.29651
0.20	2.22729	2.24320	2.42135	2.23357	2.23556	2.42712	2.29801
0.25	2.22830	2.24567	2.43124	2.23503	2.23747	2.43742	2.30352
0.30	2.22938	2.24795	2.43945	2.23640	2.23940	2.44588	2.30641
0.35	2.23043	2.24991	2.44490	2.23768	2.24109	2.45152	2.30925
0.40	2.22917	2.24992	2.44923	2.23713	2.24097	2.45593	2.31049

Atom	Site	x	у	Z	Occupancy		
x=0.15							
Li	4e	0.25	0.625	0	1		
Y	4e	0.25	0.125	0	0.85		
Eu	4e	0.25	0.125	0	0.15		
01	4e	0	0.15	0.20	1		
O2	4e	0.45	0.10	0.75	1		
x=0.20							
Li	4e	0.25	0.625	0	1		
Y	4e	0.25	0.125	0	0.80		
Eu	4e	0.25	0.125	0	0.20		
01	4e	0	0.15	0.20	1		
O2	4e	0.45	0.10	0.75	1		
		x=().25				
Li	4e	0.25	0.625	0	1		
Y	4e	0.25	0.125	0	0.75		
Eu	4e	0.25	0.125	0	0.25		
01	4e	0	0.15	0.20	1		
02	4e	0.45	0.10	0.75	1		

Table S3 The atom positions and fraction factors of LY: xEu^{3+} (x = 0.15, 0.20, 0.25, 0.30, 0.35, 0.40)

samples.

x=0.30								
Li	4e	0.25	0.625	0	1			
Y	4e	0.25	0.125	0	0.70			
Eu	4e	0.25	0.125	0	0.30			
01	4e	0	0.15	0.20	1			
O2	4e	0.45	0.10	0.75	1			
		x=	0.35					
Li	4e	0.25	0.625	0	1			
Y	4e	0.25	0.125	0	0.65			
Eu	4e	0.25	0.125	0	0.35			
01	4e	0	0.15	0.20	1			
O2	4e	0.45	0.10	0.75	1			
		X=(0.40					
Li	4e	0.25	0.625	0	1			
Y	4e	0.25	0.125	0	0.60			
Eu	4e	0.25	0.125	0	0.40			
01	4e	0	0.15	0.20	1			
02	4e	0.45	0.10	0.75	1			

Table S4 the chromaticity coordinates and color purity of $LiYO_2{:}xEu^{3+}$ samples

 х	у	Color purity

0.15	0.663	0.335	0.9918
0.20	0.662	0.335	0.9888
0.25	0.663	0.335	0.9918
0.30	0.663	0.335	0.9918
0.35	0.664	0.335	0.9948
0.40	0.663	0.334	0.9918

Table S5 Comparison of excitation position, IQE and thermal stability (I_{298 K/423 K}) for LiYO₂:0.20Eu³⁺

Phosphors	λ_{ex}	Emission intensity	IQE	Ref.
	(nm)	(423 K)		
$Y_2Mg_2Al_2Si_2O_{12}:Eu^{3+}$	393	88.5%	60.50%	1
$Y_{3}Al_{5}O_{12}:Eu^{3+}$	393	88.9%	23.73%	1
Sr ₂ LaNbO ₆ :Eu ³⁺	394	62.99%	33.51%	2
Ca ₂ GdTaO ₆ :Eu ³⁺	396	78%	82%	3
BaGe ₄ O ₉ :Eu ³⁺	394	-	57.9%	4
LaSc ₃ (BO ₃) ₄ :Eu ³⁺	393	82%	89%	5
LY:0.20Eu ³⁺	395	89%	75%	This work

and other reported Eu3+-doped phosphors and typical commercial red phosphors

References

1. X. Zhang, T. Shen, D. Kan, D. Zhang, R. Dong, Z. An, Y. Song, K. Zheng, Y. Sheng, Z. Shi and H. Zou, *Inorg. Chem.*, 2020, 59, 9927-9937.

2. Y. Hua, W. Ran and J. S. Yu, Chem. Eng. J., 2021, 406, 127154.

 S. Wang, Q. Sun, B. Devakumar, J. Liang, L. Sun and X. Huang, *J. Alloy. Compd.*, 2019, 804, 93-99. 4. C. Ji, Z. Huang, X. Tian, W. Xie, J. Wen, H. He, C. Zhou and T. Zeng, *Dyes Pigments*, 2019, 160, 772-778.

5. N. Yang, J. Li, Z. Zhang, D. Wen, Q. Liang, J. Zhou, J. Yan and J. Shi, *Chem. Mater.*, 2020, 32, 6958-6967.