Supporting Information

## The role of surface oxides and stabilising carboxylic acids of copper nanoparticles during low-temperature sintering

Rintaro Tokura,<sup>1</sup> Hiroki Tsukamoto,<sup>1</sup> Tomoharu Tokunaga,<sup>2</sup> Mai Thanh Nguyen,<sup>1</sup> and Tetsu Yonezawa<sup>1,\*</sup>

<sup>1</sup>Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, 060-8628, Japan <sup>2</sup>Department of Materials Science and Engineering, Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.



**Figure S1.** Digital images of a water droplet on 1-hexanoic acid-stabilised copper nanoparticles in a powder form. The glass substrate size is 35 mm × 50 mm.



**Figure S2.** X-ray diffraction patterns of (1) Cu nanoparticles after preparation and (2) CuO powders as the precursor of Cu nanoparticles before preparation.



**Figure S3.** RGB values of the digital images of the copper layers sintered at various temperatures. Open circle: sintered under 3%H<sub>2</sub>-N<sub>2</sub> gas flow. Closed circle: sintered under nitrogen gas flow. Red, green and blue correspond to the each colour.



**Figure S4.** X-ray diffraction patterns of the copper layers sintered at various temperatures under 3%H<sub>2</sub>-N<sub>2</sub> mixed gas flow. No peak corresponding to copper oxides can be observed. The peak height is normalised to the height of the Cu (111) peak ( $2\theta = 43.3^{\circ}$ ).



**Figure S5.** X-ray diffraction patterns of the copper layers sintered at various temperatures under nitrogen gas flow. The peaks corresponding to Cu<sub>2</sub>O can be observed in the copper layers sintered at temperatures higher than 150 °C. The peak height is normalised to the height of the Cu (111) peak ( $2\theta = 43.3^{\circ}$ ).



**Figure S6.** Cross-sectional SEM images of the sintered copper nanoparticle layers after sintering at various temperatures. (a,c,e,g) Sintered under 3%H<sub>2</sub>-N<sub>2</sub> mixed gas flow, (b,d,f,h) sintered under nitrogen gas flow. Sintering for 1 h at (a,b) 150 °C, (c,d) 180 °C, (e,f) 200 °C, and (g,h) 250 °C.



the structure model of  $Cu_{64}O$  in [001]. The unit cell of  $Cu_{64}O$  is outlined by thick lines and that of Cu by thin lines. (Reproduced with permission from Reference 33. Copyright 1985 International Union of Crystallography)



een the unit cells of Cu<sub>64</sub>O (thick lines) and Cu (thin lines).  $\bigcirc$ : Oxygen atom. **a** = 9.75 Å, **b** = 10.58 Å, **c** = 16.2 Å. (Reproduced with permission from Reference 33. Copyright 1985 International Union of Crystallography)



**Figure S9.** (a) Projection of Cu (orange) and O (red and light red) atoms of the structure model of  $Cu_{64}O$  in [001]. Copper atoms located at the corner of a rhomb with the length of 3.597 Å and the corner angles of 94.67° and 85.32°. (b) Cell structure of Cu" contains 4 Cu atoms, which can be separated from the  $Cu_{64}O$  unit cell. This Cu" cell is illustrated in Figure 13 in the main text.