Electronic Supplementary Material (ESI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2021

Supplementary Data for:

Posttranslational modifications of α-conotoxins: Sulfotyrosine and C-terminal amidation stabilise structures and increase acetylcholine receptor binding

Thao N. T. Ho^{1†}, Han Siean Lee^{2†}, Shilpa Swaminathan², Lewis Goodwin², Nishant Rai², Brianna Ushay², Richard J. Lewis¹, K. Johan Rosengren², and Anne C. Conibear^{2*}

¹ The University of Queensland, The Institute for Molecular Bioscience, St Lucia 4072, Brisbane, Australia.

² The University of Queensland, School of Biomedical Sciences, St Lucia 4072, Brisbane, Australia.

*Corresponding author:

Anne C. Conibear

The University of Queensland, School of Biomedical Sciences, St Lucia 4072, Brisbane, Australia.

E-mail: <u>a.conibear@uq.edu.au</u>

1. Mass spectra and analytical HPLC analyses of EpI, AnIB and PnIA variants.

ESI mass spectra were obtained in positive ion mode unless marked otherwise. Intensities were normalised to the highest intensity peak. Analytical RP-HPLC was carried out on a C18 analytical HPLC column (C18, 300 Å, 300 x 4.6 mm, 5 μ m) using a 2%/min gradient of acetonitrile (0.045% TFA) in water (0.05% TFA). UV absorbance was detected at 214 nm (black traces) and 280 nm (red traces).

EpI[Y(SO₃)15Y]-OH

Figure S1a. Mass spectra in positive and negative mode and analytical RP-HPLC trace for *EpI[Y(SO₃)15Y]-OH. MW_{calc}*: 1788.0, *MW_{obs}*: 1787.6.

EpI[Y(SO₃)15Y]-NH₂

Figure S1b. Mass spectra in positive and negative mode and analytical RP-HPLC trace for EpI[Y(SO₃)15Y]-NH₂. MW_{calc}: 1787.0, MW_{obs}: 1786.3.

EpI-OH

*Figure S1c. Mass spectra in positive and negative mode and analytical RP-HPLC trace for EpI-OH. MW*_{calc}: 1867.0, *MW*_{obs}: 1787.0 (positive mode); 1867.2 (negative mode).

*Figure S1d. Mass spectra in positive and negative mode and analytical RP-HPLC trace for EpI-NH*₂, *MW*_{calc}: 1866.0, *MW*_{obs}: 1786.2 (positive mode); 1864.6 (negative mode).

AnIB[Y(SO₃)16Y]-OH

*Figure S1e. Mass spectrum and analytical RP-HPLC trace for AnIB[Y(SO₃)16Y]-OH. MW*_{calc}: 1709.8, *MW*_{obs}: 1709.1.

AnIB[Y(SO₃)16Y]-NH₂

*Figure S1f. Mass spectrum and analytical RP-HPLC trace for AnIB[Y(SO₃)16Y]-NH*₂. *MW*_{calc}: 1708.8, *MW*_{obs}: 1707.6.

AnIB-OH

*Figure S1g. Mass spectra in positive and negative mode and analytical RP-HPLC trace for AnIB-OH. MW*_{calc}: 1788.9, *MW*_{obs}: 1708.6 (positive mode); 1788.5 (negative mode).

AnIB-NH₂

PnIA[Y(SO₃)15Y]-OH

*Figure S1h. Mass spectra in positive and negative mode and analytical RP-HPLC trace for AnIB-NH*₂*. MW*_{calc}: 1787.9, *MW*_{obs}: 1707.6 (positive mode); 1787.8 (negative mode).

Figure S1i. Mass spectrum and analytical RP-HPLC trace for PnIA[Y(SO₃)15Y]-OH. *MW*_{calc}: 1623.8, *MW*_{obs}: 1623.3.

PnIA[Y(SO₃)15Y]-NH₂

*Figure S1j. Mass spectrum and analytical RP-HPLC trace for PnIA[Y(SO₃)15Y]-NH*₂. *MW*_{calc}: 1622.8, *MW*_{obs}: 1621.6.

*Figure S1k. Mass spectra in positive and negative mode and analytical RP-HPLC trace for PnIA-OH. MW*_{calc}: 1702.9, *MW*_{obs}: 1623.1 (positive mode); 1702.7 (negative mode).

Figure S11. Mass spectra in positive and negative mode and analytical RP-HPLC trace for *PnIA-NH*₂. *MW*_{calc}: 1701.9, *MW*_{obs}: 1621.8 (positive mode); 1701.4 (negative mode).

Figure S2. Displacement of $[{}^{3}H]$ -epibatidine from Ac-AChBP by (A) AnIB and (B) PnIA variants. Data represent mean \pm SEM of triplicate data from three independent experiments.

3. Secondary Ha NMR chemical shifts of PnIA[Y(SO₃)15Y]-NH₂ conformations.

Figure S3. Secondary H α NMR chemical shifts of PnIA[Y(SO₃)15Y]-NH₂ conformations. Spectra were referenced to 2,2-dimethyl-2-silapentane-5-sulfonate sodium salt (DSS) as an internal reference¹ and secondary H α chemical shifts (ppm) were calculated as the difference between the measured chemical shift and the respective random coil shift from Whishart et al.²

4. Structures of AnIB variants.

Figure S4. Ensembles of 20 structures of AnIB variants with lowest energies and best MolProbity scores in (a) cartoon representation showing the α-helical regions (figures generated in MolMol) and (b) stick representation with backbone in grey, (sulfo)tyrosine in green and the C-terminal carboxylic acid/amide coloured by element type (figures generated in Pymol).

5. Structure of PnIA-NH₂.

Figure S5. Ensemble of 20 structures of PnIA-NH₂ with lowest energies and best MolProbity scores in (a) cartoon representation showing the α -helical regions (figures generated in MolMol) and (b) stick representation with backbone in grey, (sulfo)tyrosine in green and the C-terminal carboxylic acid/amide coloured by element type (figures generated in Pymol).

	EpI[Y(SO ₃)15Y]-	EpI-OH	EpI[Y(SO ₃)15Y]-	EpI-NH ₂
	ОН		NH ₂	
Energies (kcal/mol)		1		
Overall	-586.49 ± 22.50	-570.14 ± 27.18	-536.68 ± 31.76	-517.00 ± 19.15
Bonds	4.87 ± 0.67	5.17 ± 0.92	4.22 ± 0.47	4.67 ± 0.55
Angles	16.51 ± 2.17	18.34 ± 5.81	12.88 ± 2.08	16.75 ± 2.52
Improper	5.24 ± 1.12	6.28 ± 1.93	5.27 ± 0.92	6.83 ± 2.09
Dihedral	68.62 ± 0.89	69.24 ± 1.49	68.96 ± 1.54	71.85 ± 1.23
Van der Waals	-52.34 ± 4.31	-49.69 ± 3.69	-55.11 ± 2.45	-52.80 ± 3.58
Electrostatic	-629.48 ± 22.58	-619.57 ± 33.41	-572.93 ± 31.66	-564.49 ± 20.65
NOE	0.030 ± 0.0070	0.033 ± 0.016	0.025 ± 0.0079	0.027 ± 0.010
cDih	0.071 ± 0.080	0.062 ± 0.094	0.0080 ± 0.021	0.16 ± 0.14
MolProbity Statistics	I	I	I	
Clashes (> 0.4	7.84 ± 3.37	7.48 ± 6.45	7.14 ± 4.35	6.56 ± 4.01
A/1000 atoms)				
Poor rotamers	0	0	0	4.28 ± 3.59
Ramachandran	0.36 ± 1.60	2.08 ± 3.70	0	0
Outliers (%)				
Ramachandran	99.29 ± 2.20	92.50 ± 3.73	99.64 ± 1.60	100
Favoured (%)				
MolProbity score	1.44 ± 0.18	1.66 ± 0.50	1.33 ± 0.28	1.65 ± 0.40
MolProbity score	95.30 ± 3.31	84.05 ± 14.14	96.50 ± 3.35	86.05 ± 13.43
percentile				
Atomic RMSD (A)				
Mean global	0.79 ± 0.34	1.23 ± 0.42	0.57 ± 0.18	0.62 ± 0.19
backbone				
Mean global heavy	1.32 ± 0.31	1.83 ± 0.34	1.16 ± 0.19	1.38 ± 0.26
Experimental Restraints				
Distance restraints				
Short range $(i-j < 2)$	110	104	98	83
Medium range (i-j $<$	39	37	39	37
5)				
Long range $(i-j \ge 5)$	3	2	12	14

 Table S1. NMR structure calculation statistics for EpI variants

Hydrogen bond	4	3	4	4
restraints				
Total	156	146	153	138
Dihedral angle restraints				
phi	9	9	9	9
psi	11	11	11	11
chi1	5	5	4	4
Total	25	25	24	24

Table S2. NMR structure calculation statistics for AnIB variants

	AnIB[Y(SO ₃)16Y]-	AnIB-OH	AnIB[Y(SO ₃)16Y]-	AnIB-NH ₂
	ОН		NH ₂	
Energies (kcal/m	ol)			I
Overall	-511.93 ± 17.11	-515.24 ± 24.58	-538.22 ± 17.95	-619.69 ± 25.57
Bonds	4.20 ± 0.59	4.62 ± 0.43	3.78 ± 0.46	3.93 ± 0.40
Angles	11.85 ± 1.67	14.93 ± 1.82	9.62 ± 1.07	10.07 ± 1.53
Improper	5.66 ± 1.47	7.80 ± 2.88	4.52 ± 0.96	3.94 ± 0.73
Dihedral	71.39 ± 0.85	72.99 ± 0.99	71.83 ± 0.75	71.02 ± 0.69
Van der Waals	-52.39 ± 3.32	-53.39 ± 3.48	-54.39 ± 2.73	-59.32 ± 2.84
Electrostatic	-552.74 ± 19.30	-562.44 ± 25.81	-573.66 ± 18.43	-649.57 ± 25.69
NOE	0.0064 ± 0.0055	0.033 ± 0.0083	0.0099 ± 0.0043	0.010 ± 0.0045
cDih	0.095 ± 0.11	0.22 ± 0.29	0.066 ± 0.098	0.24 ± 0.14
MolProbity Stati	stics			
Clashes (> 0.4	3.38 ± 3.17	9.49 ± 5.10	3.62 ± 2.66	7.11 ± 3.61
A/1000 atoms)				
Poor rotamers	0	0	0.83 ± 2.56	0
Ramachandran	0	0.38 ± 1.72	0.33 ± 1.49	0.77 ± 2.37
Outliers (%)				
Ramachandran	96.33 ± 4.03	96.54 ± 3.93	90.67 ± 5.88	93.08 ± 5.52
Favoured (%)				
MolProbity	1.20 ± 0.46	1.67 ± 0.25	1.57 ± 0.41	1.71 ± 0.38
score				
MolProbity	95.90 ± 5.34	88.20 ± 9.24	88.90 ± 8.97	85.20 ± 9.17
score percentile				

Atomic RMSD (A	A)			
Mean global	1.28 ± 0.43	1.15 ± 0.43	1.25 ± 0.51	0.96 ± 0.38
backbone				
Mean global	1.44 ± 0.33	1.51 ± 0.36	1.30 ± 0.33	1.18 ± 0.25
heavy				
Experimental Re	straints			
Distance restrain	its			
Short range (i-j	75	65	81	98
< 2)				
Medium range	22	21	33	49
(i-j < 5)				
Long range (i-j	4	10	9	11
≥ 5)				
Hydrogen bond	0	0	0	0
restraints				
Total	101	96	123	158
Dihedral angle restraints				
phi	12	11	9	10
psi	13	12	10	11
chi1	7	5	8	9
Total	32	28	27	30

Table S3. NMR structure calculation statistics for PnIA-NH2

	PnIA-NH ₂
Energies (kcal/mol)	
Overall	-507.63 ± 37.48
Bonds	4.28 ± 0.50
Angles	17.67 ± 2.44
Improper	4.68 ± 1.36
Dihedral	64.66 ± 0.74
Van der Waals	-47.38 ± 3.05
Electrostatic	-551.74 ± 36.03
NOE	0.070 ± 0.0043
cDih	0.13 ± 0.10

MolProbity Statistics		
Clashes (> 0.4 A/1000 atoms)	15.21 ± 5.26	
Poor rotamers	0	
Ramachandran Outliers (%)	0	
Ramachandran Favoured (%)	100	
MolProbity score	1.66 ± 0.17	
MolProbity score percentile	89.65 ± 4.74	
Atomic RMSD (A)		
Mean global backbone	0.60 ± 0.19	
Mean global heavy	1.23 ± 0.40	
Experimental Restraints		
Distance restraints		
Short range $(i-j < 2)$	74	
Medium range (i-j < 5)	36	
Long range $(i-j > 5)$	8	
Hydrogen bond restraints	4	
Total	122	
Dihedral angle restraints		
phi	9	
psi	11	
chi1	0	
Total	20	

6. Crystal structure of PnIA[A10L, D14K] in complex with Ac-AChBP (PDB: 2BR8).

Figure S6. Cartoon structure of PnIA[A10L, D14K] (grey) in complex with Ac-AChBP (subunits coloured yellow, pink, green, cyan and magenta) showing binding of PnIA[A10L, D14K] at the interfaces of each of the five subunits (PDB: 2BR8)(top).³ The central helical segment of PnIA[A10L, D14K] is mostly buried in the binding site while the N- and C-termini are exposed. A buffer sulfate ion that was observed in the crystal structure is shown as sticks and coloured by element, suggesting a possible position for the sulfotyrosine residue for native (sulfated and amidated) PnIA, potentially interacting with a disulfide bond (Cys188-Cys189) in the receptor (bottom).

References

1. Wishart, D. S.; Bigam, C. G.; Yao, J.; Abildgaard, F.; Dyson, H. J.; Oldfield, E.; Markley, J. L.; Sykes, B. D., 1H, 13C and 15N chemical shift referencing in biomolecular NMR. *J. Biomol. NMR* **1995**, *6*, 135-140.

2. Wishart, D. S.; Bigam, C. G.; Holm, A.; Hodges, R. S.; Sykes, B. D., 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. *J. Biomol. NMR* **1995**, *5*, 67-81.

3. Celie, P. H., et al., Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an alpha-conotoxin PnIA variant. *Nat. Struct. Mol. Biol.* **2005**, *12*, 582-588.