Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2021

Electronic Supporting Information

Conductive Zn(II)-metallohydrogels: Role of alkali metal cations size over gelation, rheology and conductance

Chinthakuntla Mahendar,^a Yeeshu Kumar,^a Manish Kumar Dixit,^a Moupia Mukherjee,^a Abul Kalam^b and Mrigendra Dubey^{*a}

^aSoft Materials Research Laboratory, Department of Metallurgy Engineering and Materials

Science, Indian Institute of Technology Indore, Indore-453552, India

^bDepartment of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi

Arabia

*Email: mdubey@iiti.ac.in, mrigendradubey@gmail.com

Table of Contents:	Pages
Synthesis and Characterization	S2
Scheme S1	S2
Figure S1	S2
Figure S2	S3
Table S1	S3
Table S2	S3
Table S3	S4
TableS4	S4
Figure S4	S4
Figure S5	S4
Figure S6	S5
Figure S7	S5
Figure S8	S6
Figure S9	S7
Figure S10	S8
Figure S11	S8
Figure S12	S8
Figure S13	S9
Figure S14	

EXPERIMENTAL SECTION

Synthesis and characterization:

(10E, 15E)-N^{1'},N^{4'}-bis(2-hydroxybenzylidene)trephthalohydrazide (*o*-H₄TEP)

Terephthalohydrazide was synthesized from dimethyl terephthalte and hyrazine hydrate by following litrature.¹ Methanolic solution of 2-Hydroxybenzaldehyde (0.628 g, 5.15 mmol) was added dropwise to suspension of terephthalohydrazide (0.500 g, 2.577 mmol) in methanol. Further, the resulting suspension was refluxed for 5-6 hours at 60°C to complete the reaction. It afforded white coloured soild compound which was washed with methanol, water and Diethyl Ether and dried in vacuum. Yield 1.0 g (88%). ¹H NMR (DMSO-*d*₆, 400 MHz, ppm) $\delta_{\rm H}$ 7.14 (d, 4H, Ar), 7.51 (t, 2H, Ar), 7.77 (d, 2H, Ar), 8.28 (s, 4H, Ar), 8.87 (s, 2H, =CH), 11.40 (s, 2H, OH) and 12.42 (s, 2H,-NH).

Scheme S1: Synthetic route addopted for the synthesis of *o*-H₄TEP.

Figure S1. ¹H NMR Spectra of *o*-H₄TEP in DMSO-*d*₆, 400 MHz, ppm.

Table S1: Gelation tests in various common	laboratory	v solvents*
--	------------	-------------

S. N.	Solvent	<i>o</i> -H₄TEP/ LiOH/ Zn(NO₃)₂
1. Water		G
2.	Acetonitrile	S
3.	Methanol	р
4.	Ethanol	р
5.	DMF	S
6. DMSO		S
7. Acetone		S
8.	Chloroform	S
9.	DCM	S
10.	THF	S

*Where, S= solution, G= gel, P= precipitate.

Table S2: Gel or sol formation of o-H4TEP in presence of Zn(NO₃)₂ with different alkali bases*

Solvent	1+LiOH	1+NaOH	1+KOH	1+CsOH
H ₂ O	G	G	G	G

*Where, G= gel.

Figure S2. Picture represents the gelation ability of o-H4TEP with (A) Li⁺, (B) Na⁺, (C) K⁺ and (D) Cs⁺.

Figure S3: Stimuli responsive properties of MH-Li metallogel.

Table S3: Screening of gelation behaviour of o-H₄TEP +LiOH in presence of different transition metal nitrates

	Solvent	Co(NO ₃) ₂	Cu(NO ₃) ₂	Fe(NO ₃) ₂	Cd(NO ₃) ₂	Zn(NO ₃) ₂	
	H ₂ O	Р	Р	Р	Р	G	
contract of the second by a second seco							

*Where, G= gel and P= precipitate.

Table S4: Effect of Counte	r anions on gel formation in	presence of o-H4TEP/LiOH
----------------------------	------------------------------	--------------------------

Solvent	Zn(OAc)₂	ZnCl ₂	Zn(ClO ₄) ₂	ZnSO4	Zn(NO ₃) ₂
H₂O	Р	Р	Р	Р	G

*Where, G= gel and P= precipitate.

Figure S4. MH-Li : (A-C) FE-SEM and (D-F) TEM at different maginifications.

Figure S5. PXRD pattern of *o*-H₄TEP (Blue line), MH-Li (Red line), MH-Na (Pink line), MH-K (Green line) and MH-Cs (Sky Blue line) xerogels.

Figure S6. UV-vis titration experiments of (A) LiOH, (B) NaOH, (C) KOH and (D) CsOH deprotonated $o-H_4TEP$ (1) (1X10⁻⁴M, H₂O) with 2 equivalents of Zn(NO₃)₂ (1X10⁻²M, H₂O).

Figure S7. Job's plot for (A) LiOH deprotonated o-H₄TEP vs Zn(NO₃)₂ (B) CsOH deprotonated o-H₄TEP vs Zn(NO₃)₂.

Figure S8. FT-IR spectra of (A) o-H₄TEP and MH-Li xerogel (B) MH-Na, MH-K, MH-Cs xerogels.

Figure S9: Fluorescence titration of alkali base (A). Li⁺, (B). Na⁺, (C). K⁺, (D). Cs⁺ deprotonated $o-H_4TEP$ (10⁻⁴ M) with $Zn(NO_3)_2$ (10⁻²M).

Figure S10: Fluorescence dilution experiment of MH-Li Gel: (A) complete comparative dilution analysis, 18 nm red shift was observed upon dilution from 1x 10⁻⁴ M to 0.85X10-4 M, represented in black line (B) Dilution from 10⁻²M to 10⁻³M shows presence of CHEFF phenomenon, (C) Dilution from 10⁻³M to 10⁻⁴M shows presence of ACQ phenomenon and (D) Dilution from 10⁻⁴M to 10⁻⁵M shows dilution effect.

Figure S11. Dynamic Frequency Sweep: (A) MH-Li (B) MH-Na (C) MH-K and (D) MH-Cs.

Figure S12. (A) Dynamic temperature ramp over the loss modulus (G") and storage modulus (G') for MH-Li, (B) Plot of tan δ vs. temperature and T_{gel} = 85 °C.

Figure S13. Effect of $[Zn^{2+}]$ concentration on the rheological properties of MH-Li; (A) plot the G' values against the concentration of Zn^{2+} along with the ratio of $[Zn^{2+}]/[Li^+]$ at 0.01 % strain and (B) Plot of G' vs strain at various Zn^{2+} concentrations.

Figure S14. The Thermo Gravimetric Analysis (TGA) along with derivative plot for (A) MH-Li (B) MH-Na (C) MH-K and (D) MH-Cs xerogels.

Figure S15. Pictorial representation of steps involved in gelation process.

References:

1. M. Dubey, A. Kumar, R. K. Gupta and D. S. Pandey, Chem. Commun., 2014, 50, 8144.