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Bayesian Optimization for Material Discovery Processes with Noise†

Sanket Diwale,a Maximilian K. Eisner,b Corinne Carpenter,a Weike Sun,a Gregory C.
Rutledge,∗a and Richard D. Braatz∗a

An augmented Bayesian optimization approach is presented for materials discovery with noisy and
unreliable measurements. A challenging non-Gaussian, non-sub-Gaussian noise process is used as a
case study for the discovery of additives for the promotion of nucleation of polyethylene crystals.
NEMD (non-equilibrium molecular dynamics) data are used to validate and characterize the statistical
outcomes of the candidate additives and the Bayesian optimization performance. The discovered
candidates show nearly optimal performance for silicon for the class of tetrahedrally coordinated
crystals and a material similar to graphene but more compliant for the class of hexagonally coordinated
crystals. The Bayesian approach using a noise-augmented acquisition function and batched sampling
shows a sub-σ level of median accuracy and an improved robustness against noise.

1 Introduction
Global competitiveness in advanced materials depends on short-
ening the development cycles for the discovery of new materials.
Given the vast monetary and time cost associated with experi-
mental characterization and empirical discovery of new materi-
als, data-driven and simulation-based techniques allow for the
rapid discovery and development of promising new material can-
didates.

Molecular simulations and finite-element methods have long
been used for gaining insights into the characteristics and for-
mation mechanics of new material candidates. Embedding these
simulations within iterative learning and optimization schemes
allows for a computational and data-driven approach to the dis-
covery of new materials. This direct approach, however, faces
several challenges.

Firstly, material formation mechanics are inherently stochastic,
and thus multiple (stochastic) molecular simulations are required
to obtain statistical material characteristics with sufficiently high
confidence. Secondly, each molecular simulation incurs a high
computational cost and can take anywhere from a few hours to
a few days. Embedding such a simulation directly into an iter-
ative learning or optimization scheme can become prohibitively
expensive.

Another challenge posed from the numerical optimization per-
spective is that the number of potential degrees of freedom that

a Department of Chemical Engineering, Massachusetts Institute of Technology, Cam-
bridge, MA 02139 United States; E-mail: braatz@mit.edu, rutledge@mit.edu
b Department of Electrical and Computer Engineering, Technical University of Munich,
80333 Munich, Germany
† The source code for the work presented in this article may be obtained from https:
// github. com/ sanketdiwale/ NoisyBayesianOptimization

define the class of potential molecular formulations is large and
include both continuous and discrete variables. These optimiza-
tions become especially challenging to solve when the molecular
simulations and the resulting objective functions are inherently
stochastic. We show in this work that an atomic force field model
can be effectively used to parameterize the search space for mate-
rials and used with a Bayesian optimization scheme to minimize
the number of experiments or simulations required for a materials
discovery problem in the presence of noise.

Bayesian optimization addresses the challenges of experimen-
tal sample minimization and noise modeling by using a stochas-
tic model to assign information-theoretic value and confidence
to the acquired experimental samples. A simultaneous learning
and optimization approach is taken to address the exploration-
exploitation tradeoff to minimize the number of samples required
to discover optimal candidates reliably.

The work in Bayesian optimization may be divided into two
parts. The first part considers optimization with noise-free obser-
vations of the objective values.1–6 The second considers optimiza-
tion in the presence of noisy observations.7–17

The primary role of Bayesian uncertainty in such optimization
algorithms is to serve as a surrogate for the information-theoretic
uncertainty induced by the lack of observed data in the search
space. The surrogate allows for the development of decision rules
for sampling the objective in an iterative optimization scheme to
balance between exploration (to reduce information-theoretic un-
certainty) and exploitation (to optimize the intended objective
value in the optimization).

By acquiring new samples of data to reduce information-
theoretic uncertainty, the optimization scheme progressively
learns a better model for the objective function while the exploita-
tion terms in the decision rule bias the exploration towards the
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regions with good objective values.
The introduction of noise in the observations is known to sig-

nificantly degrade the performance in Bayesian optimization12,17

and presents an active area of research.12–17 The degradation can
be attributed to the fact that the Bayesian uncertainty in the pres-
ence of noise is used for the dual purpose of representing ob-
servation noise as well as information-theoretic uncertainty. The
dual use of a single uncertainty model thus creates ambiguity for
the decision rules where a high uncertainty value due to noise
may obscure the knowledge of high information-theoretic uncer-
tainty, leading to inefficient exploration and the loss of conver-
gence properties.

In recent years, Bayesian optimization has been introduced to
many fields, including in robotics,7–11 software testing,12 per-
sonalized medicine,18 automated machine learning,19, reinforce-
ment learning,20,21 and materials discovery,22–25 where noisy
measurements can significantly degrade the algorithm’s perfor-
mance12 and thus require further algorithmic and theoretical im-
provements to support practical applications.

In particular, works for materials discovery using Bayesian op-
timization22–25 have focused on the use of Bayesian optimiza-
tion algorithms designed assuming either noise-free or Gaussian
noise assumptions. We present here a practical materials discov-
ery problem example, where such noise assumptions are inval-
idated and result in significant performance degradation of the
previously used Bayesian optimization algorithms. We further
show how simple modifications to the decision rules used in the
algorithm may improve the robustness of the optimization to the
observed noise.

For the materials discovery problem, we consider the process
of polymer (polyethylene) nucleation in the presence of a nucle-
ating agent. The process output, given as the observed nucleation
time, follows an exponential probability distribution and presents
a concrete, challenging, real-world example of a non-Gaussian
and non-sub-Gaussian noise process to tackle by Bayesian op-
timization. Such a noise process falls outside the currently ex-
plored theoretical and empirical understanding of Bayesian opti-
mization15,26–30 that has largely focused on noise-free, Gaussian
noise, and sub-Gaussian noise. We highlight some of challenges
posed to Bayesian optimization by such noise, and characterize
and discuss convergence when dealing with such noise. A noise-
augmented approach is shown to perform with a greater degree
of robustness and better convergence performance than the tradi-
tional Bayesian optimization schemes designed for noise-free or
Gaussian noise scenarios.

The type of stochastic models used for Bayesian optimiza-
tion can be varied and includes probabilistic graphical models,31

Bayesian neural networks,32,33 Parzen tree estimators,34 and
Gaussian process models.7–11 The use of Gaussian process models
in Bayesian optimization is by far the most common, owing to the
decades of empirical and theoretical exploration of their proper-
ties for Bayesian optimization.15,26–30,35 Gaussian process-based
optimization also empirically offers the best performance in low-
dimensional parameter spaces due to the higher degrees of free-
dom involved in training tree- or neural network-based models.33

For this reason, Gaussian processes are used as the underlying

model in this work.
In the following, Section 2 describes the polymer nucleation

process, and the material discovery problem addressed in this
work. Section 3 briefly introduces Bayesian optimization for noisy
processes and Section 4 discusses theoretical aspects of the algo-
rithm. Section 5 hosts a discussion on the acquisition functions
used as a sampling decision rule to choose iterates in Bayesian
optimization and introduces the generalized noise-augmented ac-
quisition function used in this work. Section 6 presents numerical
results and discussion on the application of the noisy Bayesian op-
timization algorithm to the materials discovery problem in poly-
mer nucleation. Section 7 highlights some key takeaways from
the work and future directions for investigation.

The results show the robustness of the proposed algorithm to a
non-Gaussian noise with a median convergence error of less than
one standard deviation of the noise and a worst-case error of less
than three standard deviations.

2 Polymer Nucleation: A Case Study
In polymer crystallization from melts, additives referred to as nu-
cleating agents are used to enhance the crystalline growth rate
by lowering the activation energy for nucleation and subsequent
crystallization. The nucleating agent’s quantity and choice di-
rectly control the degree of crystallinity and morphology intro-
duced into the polymer. The agent’s effect in crystalline growth
is characterized by the nucleation time (also called the induction
time τ) that denotes the time instant at which heterogeneous nu-
cleation occurs at the interface between the nucleating agent and
the polymer precursor. The induction time at such an interface
follows an exponential-like probability distribution36 of the form

p(τ)∼ κ(τ)e−
∫

τ

t0
κ(t)dt (1)

where κ(·) is a time-varying nucleation rate for the process, and
t0 is the initial time at which the nucleation process begins. The
time-varying nucleation rate κ(t) captures the effects of a time-
varying temperature profile on the nucleation.36

Under the simplifying assumption of time-invariant tempera-
ture and nucleation rate κ, (1) simplifies to a standard exponen-
tial distribution,

p(τ)∼ κe−κτ , (2)

with a mean induction time τmean = 1/κ and a variance of 1/κ2.
The nucleation rate for a particular agent depends on its physi-

cal and chemical properties and has been studied for n-alkanes for
tetrahedrally coordinated agents like silicon37 and for graphene-
like materials.38 A united-atom force field (UAFF) model has
been used37,38 to study the dependence of κ and the induction
time on four parametric properties of nucleating agents:

1. σSW , the atomic diameter of the agent

2. εSW , the depth of two-body interaction potential

3. λSW , relative strength of three body interactions

4. εAD, the depth of interaction potential between the agent
and crystallizing material
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The first three parameters refer to the Stillinger-Weber (SW) po-
tential39 used to model the nucleating agent, where σSW provides
a length scale, εSW is a cohesive energy scale, and εAD is an adhe-
sive energy scale between the nucleating agent and the polymer.
These properties are readily available for reference materials such
as graphene and silicon from the literature, which have been used
to normalize parameter values with respect to reference materi-
als.37,38 We denote normalized values with a ∗ superscript.

By considering the molecular design space to be parameterized
by a vector of normalized UAFF parameters,

x = (σ∗SW ,ε∗SW ,λ ∗SW ,ε∗AD),

we can denote the nucleation rate per mole of an additive to
be denoted as κ(x). By systematically varying the values of x
over a grid, a response surface κ(x) for the dependence of nucle-
ation rate on the above parameters using non-equilibrium molec-
ular dynamic (NEMD) simulations can be obtained.37,38 These
response surfaces provide an estimate of the ground truth for
a case study in the application of Bayesian optimization to the
noisy, materials (additive) discovery problem in n-alkanes using
tetrahedral and hexagonal coordinated additives, considered in
Section 6.

Using NEMD data,37,38 an estimate for the response surface
is constructed using an elastic learning framework40 to predict
the mean induction time τmean(x) as a function of x. This mod-
eling step is not required for the Bayesian optimization scheme.
However, this step allows us to define an underlying ground truth
to compare convergence results in the Bayesian optimization ap-
proach. The model also acts as an inexpensive function evalu-
ation substitute to the significantly more expensive NEMD sim-
ulation required to make predictions for an arbitrary candidate
x. Using such a substitute allows faster function evaluations and
enables running several variations of the Bayesian optimization
scheme for a comparative study of their properties in a pragmatic
time frame. In a real application, when such a comparative study
of variants is not intended, the function evaluations would be di-
rectly computed from the output of the expensive NEMD run.

The elastic net provides an exponential indefinite quadratic
model of the form (3) for the mean induction time estimate τ̂mean

as a function of x,

κ̂(x)−1 = τ̂mean(x) = exp
(

x>Qx+Ax+b
)
. (3)

We consider two separate case studies for the additive discovery
problem. The first considers additives in the class of tetrahedral
(silicon-like) crystals, and the second for hexagonal (graphene-
like) additive crystals with NEMD data from Bourque et al.37,38

Table 1 shows the parameters learned from the two data sets.
Bourque et al.37 restricts the data exploration to only three

out of the four parameters, leaving out dependencies on ε∗SW . To
maintain consistency with the available NEMD data, we restrict
the Bayesian optimization for the tetrahedral case to the same
three parameters. Furthermore, the search space is restricted to
the bounded domain of parameters considered in the NEMD data
to avoid extrapolation from the data available. The bounded do-
main intervals are shown in Table 2.

Table 1 Model parameters for the mean induction time models

Case Q A b
Tetrahedral Q1

(
−382.66 0 0 −10.72

)
172.64

Hexagonal Q2
(
−14.69 0 0 −0.106

)
9.457

Q1 =

227.88 0 −0.28 −6.53
0 0 0 0

−0.28 0 0 0.83
−6.53 0 0.83 10.45


Q2 =

17.27 1.56 −2.27 −9.34
1.56 0 0 −1.86
−2.27 0 0 2.59
−9.34 −1.86 2.59 8.84



Table 2 Bounds on the search domain.

Case σ∗SW ε∗SW λ ∗SW ε∗AD
Tetra. [0.8,0.95] – [0.9,1.3] [0.6,1]
Hexa. [1.05,1.33] [0.28,0.44] [0.31,0.74] [0.8,1.2]

The mean induction time model (3) is then used with (2) to ob-
tain an estimate for the probability distribution for induction time
as a function of x. A random sample is drawn from this distribu-
tion to provide a noisy realization for the induction time measure-
ment for a candidate x for the Bayesian optimization scheme.

In order to compare the results from Bayesian optimization to
the estimate of the underlying ground truth, we run a numerical
optimizer on the model (3) to find the minimizer for the mean
induction time as

τ̂
opt
mean =

{
4.02 ns Tetrahedral case

7.34 ns Hexagonal case
(4)

and

x̂opt =

{
(0.98,−,0.9,0.869) Tetrahedral case

(1.05,0.44,0.31,1.115) Hexagonal case
(5)

The Bayesian optimization is used in Section 6 as an alternative
method to find the optimal additive candidate x that minimizes
the mean induction time without having the need to construct an
a priori model of the form (3) or having access to an extensively
gridded NEMD data set as obtained from Bourque et al.37,38 With
a noisy measurement of induction times, the convergence error of
the optimization scheme needs to be evaluated in relation to the
variance of the measurement noise. We use the noise standard de-
viation at the estimated optimal candidate from (4) as a reference
to compare the convergence error against. For an exponential dis-
tribution, the standard deviation is equal to the mean, and thus
we assign the reference standard deviation

ση = τ̂
opt
mean (6)

The following sections describe the Bayesian optimization algo-
rithm and its application to the noisy materials-discovery problem
and the case studies described above.
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Fig. 1 Bayesian optimization flowchart. (L (Dk) is used to denote the
learning method of choice being applied to a data set Dk.)

3 Noisy Bayesian Optimization

This section describes the Bayesian optimization approach to the
noisy materials-discovery problem.

Let X be a set of candidate materials, parameterized by a
vector x. Let f (x) be a noisy process with an unknown distribu-
tion, which can be sampled via experiment for any given x. The
Bayesian optimization seeks to find a minimizer to

xopt = argmin
x∈X

E[ f (x)] (7)

Since f (x) is an unknown stochastic process, a stochastic pro-
cess model f̂k(x) is learned from a sampled data set of noisy obser-
vation tuples Dk = {(xi,yi) : i = 1, . . . ,k}, where yi is a noisy out-
come of the distribution f (xi).

Several learning methods including probabilistic graphical
models,31 Bayesian neural networks,32,33 Parzen tree estima-
tors,34 and Gaussian process models7–11 have been used to con-
struct a stochastic model f̂k(x) in Bayesian optimization. Gaussian
process models are used in this work, due to the simplicity of the
learning method, better empirical performance,33 and existing
theoretical foundations15,26–30,35 that contextualize the conver-
gence results.

The Gaussian process model41 provides a Bayesian posterior
mean and variance prediction at any query point x, conditioned
on the evidence observed from the data set Dk and a prior mean
function µ0(x) and prior covariance function K(xi,x j). The poste-
rior mean prediction from the model is given by

µk(x) = µ0(x)+
k

∑
i=1

αiK(x,xi) (8)

with coefficients αi given by the members of the Rk vector,

α =
[
K(X ,X)+σ

2
n Ik

]−1
(y−µ0(X)) (9)

Table 3 Example acquisition functions.

Acquisition Function Form
Expected Improvement (EI) E[max( f̂ opt

k − f̂k(x),0)]

Lower Confidence Bound (LCB) E[ f̂k(x)]−βk

√
Var[ f̂k(x)]

with

K(X ,X) =


K(x1,x1) . . . K(x1,xk)

K(x2,x1) . . . K(x2,xk)
...

...
...

K(xk,x1) . . . K(xk,xk)

 (10)

y =


y1
...

yk

, µ0(X) =


µ0(x1)

...
µ0(xk)

, K(x,X) =


K(x,x1)

...
K(x,xk)


>

(11)

and σ2
n being the assumed noise variance of an additive Gaussian

measurement noise and Ik being an identity matrix of size k. The
posterior covariance is given by

Σk(x,s) = K(x,s)−K(x,X)
[
K(X ,X)+σ

2
n Ik

]−1
K(X ,s) (12)

for any x,s ∈X .

An additional step of selecting an optimized prior for the Gaus-
sian process, by choosing a particular mean function µ0 and prior
covariance function K within a parameterized space of mean and
covariance functions, is often undertaken in Gaussian process
learning, given the data set Dk. The parameters used to param-
eterize this space of function choices for µ0, K are called hyper-
parameters and are learned using a Bayesian or maximum likeli-
hood approach.41

The optimization of hyperparameters based on Dk is, how-
ever, known to cause over-fitting problems and loss of conver-
gence guarantees in Bayesian optimization.26,30 As a result, most
Bayesian optimization schemes with convergence guarantees rely
on either using fixed hyperparameters15,26 or a scheduling or
error-based adaptive approach to hyperparameter selection.27–29

The second element of Bayesian optimization is a decision rule,
selecting the next batch of iterates to be sampled via experiment.
Given the stochastic model f̂k, an acquisition function A(x| f̂k) as-
signs a merit value to each potential sampling location x in the
search space. This value is meant to trade off the value of ex-
ploring the search space against the value of exploiting current
model knowledge based on Dk. Exploration allows finding new
potential optimal candidates that the model f̂k cannot yet predict
due to the lack of relevant data in Dk while exploiting the exist-
ing model f̂k allows choosing sample points that are most likely to
provide optimal candidates within the limitations of model. Some
examples of such acquisition functions are shown in Table 3 and
discussed in detail in Section 5.

Let q be the batch size of candidates to be acquired at each
iteration of the optimizer. The next batch of candidate samples
for experiments are then selected as maximizers of the acquisition
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function A,

xk+1, . . . ,xk+q = argmax
sk+i∈X , i=1,...,q

A(sk+1, . . . ,sk+q| f̂k). (13)

The sampled experimental data {(yk+i,xk+i) : i = 1, . . . ,q} ac-
quired from the proposed candidates are appended to the data set
to obtain Dk+q = Dk ∪{(yk+i,xk+i) : i = 1, . . . ,q} and the learned
stochastic model is updated with the new data set to provide a
model f̂k+q. Estimates for the optimal value f̂ opt

k+q and optimal

candidate xopt
k+q are then obtained from the updated model f̂k+q

within its trust region, typically chosen as the set of points where
sufficient sampling has occurred. We consider the observed set of
points {x1, . . . ,xk+q} as the trust region for the model, and esti-
mate optimal candidate as the point with the minimum expected
value for the stochastic model f̂k+q,

xopt
k+q = argmin

x∈{x1,...,xk+q}
E
[

f̂k+q(x)
]

f̂ opt
k+q = E

[
f̂k+q(x

opt
k+q)

] (14)

The updated model f̂k+q is then used to compute the next batch
of candidate samples using the acquisition function as done in
(13), and the iterations are repeated until convergence is de-
tected.

Figure 1 shows a flowchart for the Bayesian optimization al-
gorithm described above with q = 1 chosen for simplicity. A ter-
mination condition (aka convergence) is said to be reached if a
predefined maximum number of iterations is reached or if the
maximum value for the acquisition function falls below a thresh-
old value and no change in the optimal candidate value is ob-
served over several iterations. The Bayesian optimization is then
said to be complete, and the last updated optimal candidate xopt

k+q
is declared as the optimal candidate.

A few limitations to the Bayesian optimization approach may
be kept in mind when designing such an algorithm. The first
relates to the dimension of the search space. It is known from
theory26 that near-optimal bounds for the convergence errors are
on the order of O

(
1

k1/d

)
in a d-dimensional search space after k

iterations of the algorithm. Thus, as the dimension of the search
space d increases, the log of the error by a multiplicative factor
d. This can make the application of the Bayesian optimization
approach to large dimensional search spaces difficult in practice.

The second limitation relates to the increasing computational
complexity O(n3) of kernel-based learning methods such as Gaus-
sian process models with increasing size n of the training set. This
limitation may be overcome by using a parameterized model,
such as a generalized linear model or a neural network with a
fixed set of basis functions or feature mappings. The use of a gen-
eralized linear model may, however, limit the expressiveness of
the model, and the use of a neural network may not be amenable
to practical training with the small sizes of the training sets ex-
pected from a Bayesian optimization algorithm. A practical ap-
proach may be to use a randomized feature map that approxi-
mates a kernel, as proposed by Ueno et al22.

The third limitation is the lack of a priori bounds on the num-

ber of iterations required to find a good quality solution. The
algorithm typically provides an asymptotic convergence bound,
but the exact number of required iterations remains subject to
trial and error and empirical observation. Section 4.1 presents a
detailed discussion on characterizing the convergence error and
provides a sketch for proof towards establishing a convergence
bound in the presence of noise. An important insight that may
be gained from the discussion is that obtaining a low conver-
gence error with high probability requires repeated sampling at
the observed candidates in the optimization algorithm. An ac-
quisition function that promotes such repeated sampling is thus
important for the reliable operation of the algorithm in the pres-
ence of noise. Section 4.2 discusses the empirical characterization
of convergence in such noisy scenarios.

4 Convergence Analysis

4.1 Theoretical analysis

Given a declaration of an optimal candidate xopt
k and f̂ opt

k after
acquiring k data samples as in (14), the ability of the algorithm
to converge to the true (but unknown) optimal values of xopt

true and
f opt
true can be measured in terms of the convergence errors,

δ f k
opt =

∣∣∣ f̂ opt
k − f opt

true

∣∣∣ & δxk
opt =

∥∥∥xopt
k − xopt

true

∥∥∥ . (15)

The convergence error δ f k
opt is called the instantaneous regret

after acquiring k samples. Similarly, the cumulative sum δ f 1:k
opt =

∑
k
i=1 δ f i

opt is called the cumulative regret. An algorithm is said
to have the desirable asymptotic property of no-regret if the limit
limk→∞ δ f 1:k

opt/k = 0.
In most cases, the true optimal values are unknown. Thus the

convergence errors in (15) cannot be directly measured. Instead,
only a probabilistic bound on the expectation of these regrets can
be made, based on the model assumptions and number of ob-
served samples in the data set.

One such bound,26 for the noise-free case of Bayesian opti-
mization in a d-dimensional search space is

E
[
δ f k

opt

]
∼ O

(
1

k1/d

)
(16)

where the big-O notation is used to describe the asymptotic be-
havior of the expected instantaneous regret. Equation (16) shows
that, if the underlying true function is at least twice differen-
tiable and continuous (C2 function), with noise-free measure-
ments, the expected regret asymptotically converges towards zero
faster than the function k−1/d .

With noisy measurements, an additional challenge is encoun-
tered due to the errors incurred in learning the error-free true
mean values. In the noise-free case, kernel-based learning meth-
ods like the Gaussian process learning, provide an error-free
prediction of the mean value at the observed candidate points
{x1, . . . ,xk}. However, for the noisy case, the measurements yi are
polluted with noise and the prediction error

η f (x) = E[ f̂k(x)]−E[ f (x)] (17)

is non-zero at the observed locations in Dk. An error in the mean
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value prediction directly affects the value computed by the ac-
quisition function and causes an error in the optimal estimates
obtained from (14). Thus noise in the measurement can act as an
adversary in the Bayesian optimization scheme and lead to a loss
of convergence properties.

The convergence of a Bayesian scheme in the presence of noise
thus relies on drawing multiple samples around the already sam-
pled locations in Dk to reduce the prediction error η f . A sig-
nificant degradation in the convergence properties for Bayesian
optimization can be observed empirically13,42,43 with noisy mea-
surements, when using the standard expected improvement (EI)
or lower confidence bound (LCB) acquisition functions (Table 3).
While convergence to the optimum can still be guaranteed with
Gaussian noise,15 the convergence is shown empirically to be
much slower with the standard EI or LCB acquisition functions.42

The noise-augmented EI and knowledge-gradient (KG) acquisi-
tion functions are known to have much better empirical conver-
gence rates with noisy measurements.12,43

Furthermore, the convergence of Bayesian optimization
schemes in the presence of a non-(sub)Gaussian noise distribu-
tion such as considered in Section 2 is not yet established the-
oretically. The additional challenge posed by such distributions
when using a Gaussian process model is the structural mismatch
in the learned stochastic process (Gaussian) and the real under-
lying stochastic process ( f ). With finite repeated sampling at
a given location x, the prediction error η f (x) may still remain
large, thus leading to slower convergence or adversarial effects of
the noise in Bayesian optimization. These difficulties are shown
empirically in Section 6. However, Section 6 shows empirically
that a combination of batched sampling and a generalized noise-
augmented EI acquisition function can still be used to provide an
improved convergence and robustness in Bayesian optimization
with such structural mismatches.

A non-zero prediction error η f (x) implies a non-zero expected
error in the optimal candidate estimates,

δxk
opt =

∥∥∥∥∥ argmin
x∈{x1,...,xk}

E[ f̂k(x)]− xopt
true

∥∥∥∥∥ . (18)

Recalling the definitions (17) and xopt
true = argminx∈X E[ f (x)], a re-

arrangement of terms is be used to rewrite δxk
opt as

δxk
opt =

∥∥∥∥∥ argmin
x∈{x1,...,xk}

η f (x)+ argmin
x∈{x1,...,xk}

E[ f (x)]− argmin
x∈X

E[ f (x)]

∥∥∥∥∥
≤

∥∥∥∥∥ argmin
x∈{x1,...,xk}

η f (x)

∥∥∥∥∥+
∥∥∥∥∥ argmin

x∈{x1,...,xk}
E[ f (x)]− argmin

x∈X
E[ f (x)]

∥∥∥∥∥
(19)

This expression splits the error in optimal candidate estimation
into two parts shown on the right-hand side of the inequality. The
first part (‖argminx∈{x1,...,xk}η f (x)‖) relates to the prediction error
(17) in the model, while the second part relates to the exploratory
error for the optimization arising from the limited trust region of
the model ({x1, . . . ,xk} ⊂X ).

If the expectation of the true stochastic process (E[ f (x)]) is as-
sumed to be Lipschitz continous with a Lipschitz bound L, then an

error in optimal candidate estimation δxk
opt leads to a worst-case

estimation error in the optimal value δ f k
opt ≤ Lδxk

opt . The effect of
prediction and exploratory errors on δ f k

opt is then proportional to
their effect on δxk

opt .
For the noise-free case, Gaussian process learning can provide

a zero prediction error (‖argminx∈{x1,...,xk}η f (x)‖ = 0) at the ob-
served points, while the exploratory error follows an asymptotic
convergence as shown in (16).

For the noisy case, we must rely on repeated sampling
at the locations in {x1, . . . ,xk} to drive the prediction error
‖argminx∈{x1,...,xk}η f (x)‖ towards zero. The need for repeat sam-
pling thus slows down the convergence rate for the exploratory
error and may lead to a non-zero prediction error at termination
due to the finite nature of repeated sampling in a practical algo-
rithmic setting.

With repeated sampling at a given location, assuming negligi-
ble covariance to other locations, the worst-case convergence rate
for the prediction error can be expected to follow a normal distri-
bution η f (x)∼N (0,σ2

η (x)/n(x)) using the central limit theorem,
where σ2

η (x) is the noise variance at x and n(x) is the number of
samples drawn at location x.

A Bayesian optimization scheme with the underlying assump-
tions and conditions of (16), taking N repeated samples for every
location sampled in Dk, follows an exploratory error convergence
rate of O(1/(N−1k)1/d). The overall error in δxk

opt can then be
analyzed as an asymptotic convergence resulting from the sum of
the two converging error components.

Repeated sampling at the optimal location xopt
true will lead to

a prediction error η f (x
opt
true) ∼ N (0,σ2

n (x
opt
true)/N). The conver-

gence error in the estimated optimal value δ f k
opt ∼ |η f (x

opt
true)|

then has the expected value of the half-normal distribution,
E[δ f k

opt ] ∼
√

2/πσn(x
opt
true)/

√
N and variance Var[δ f k

opt ] ∼ (1 −
2/π)σ2

n (x
opt
true)/N.

We can thus expect to see a non-zero convergence error on
average in noisy Bayesian optimization with magnitude on the
order of ση/

√
N, (ση = σn(x

opt
true)). We observe this phenomena in

Section 6 with ση for the case studies defined in Section 2. We
characterize the performance of achieving an expected error of
less than one standard deviation of the noise (ση ) with the name,
sub-σ convergence or accuracy.

The above discussion is an outline of the arguments behind
the convergence expected from a Bayesian optimization scheme
in the presence of noise. A further formalization of the proof
must take into account the effects of covariance between the data
samples that are left out of the above discussion for simplicity.

Section 5 introduces some of the acquisition functions used in
Bayesian optimization and introduces the generalized form of the
noise-augmented Expected Improvement acquisition used in this
work that promotes a data-dependent strategy for repeated sam-
pling to selectively drive the prediction error η f (x) down for the
optimal candidates.

4.2 Empirical analysis

While the theoretical analysis of section 4.1 provides insights into
the convergence rate statistics up to a proportionality factor, in
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practice, the factor is unknown and problem-dependent. Thus
the theoretical bounds may not be amenable to characterize the
number of samples required to guarantee convergence. Instead,
one may empirically observe the rate of change of the optimal
estimate with the iterations of the algorithm.

Typically, a budget of N samples is decided beforehand for the
optimization, and the optimization is terminated after the acqui-
sition of N samples. The last Ntest samples of the N samples may
be used as a test set to characterize the convergence.

The rate of change in the observed function value f (x̂opt
k ) is

observed using the variance of the observed values over the test
set. If the variance is smaller than a small threshold ε, the opti-
mization is likely converged, if not, the budget for the samples N
may need to be increased further.

The convergence characteristics of the Bayesian optimization
scheme vary from one run of the algorithm to another due to the
randomized nature of acquired samples. The statistical charac-
terization of the algorithm performance on a problem thus re-
quires multiple independent runs. The algorithm’s reliability is
then evaluated by observing the variance in convergence charac-
teristics across the multiple runs. Equation 20 below proposes a
quality metric (Q) for the algorithm across L independent multi-
ple runs.

Q( f ) = max
k∈Ntest

Var
[

f
(

x̂opt
k,1

)
, f
(

x̂opt
k,2

)
, . . . , f

(
x̂opt

k,L

)]
(20)

where x̂opt
k,i denotes the estimated optimal candidate at the kth iter-

ation from the ith independent run of the algorithm. The variance
Var
[

f
(

x̂opt
k,1

)
, f
(

x̂opt
k,2

)
, . . . , f

(
x̂opt

k,L

)]
is taken across the L observed

function values in the independent runs, at each iteration k in the
test set. The quality metric Q then takes the worst case variance
observed in the test set as a measure for the reliability or quality
of the algorithm’s design choices. A small value for Q, implies a
small worst case variance and thus a higher reliability or quality
for the algorithm.

The worst-case variance observed in the test set indicates the
worst-case convergence result that may be expected if any one of
the independent runs was realized during the application of the
algorithm to a problem and if the algorithm was randomly ter-
minated at any iteration in the test set. Since the exact number
of iterations required for reliable convergence is often unknown,
such a worst-case characterization for the convergence result pro-
vides an important insight into the algorithm’s reliability.

The function f in equation 20 may be replaced by other func-
tions such as the expected value of f or the regret function if the
underlying ground truth for a problem is known, to provide addi-
tional insights into the convergence characteristics.

5 Acquisition Functions

An acquisition function A(x| f̂k) evaluates the merit of choosing
a candidate point x for sampling to drive down the prediction
and exploratory errors (introduced in Section 4) in a Bayesian
optimization scheme. The next point to sample within a Bayesian
optimization algorithm is then found as the point that maximizes

the acquisition function, i.e.,

xk+1 = argmax
x∈X

A(x| f̂k) (21)

The simplest form of acquisition function is provided by the
probability of improvement (POI),

APOI(x| f̂k) = P( f̂k(x)≤ f̂ opt
k ) (22)

where f̂ opt
k−1 is the current best estimate for the optimal value. This

kind of acquisition function represents the greedy approach to
candidate sampling, where the sample showing the best probabil-
ity of improvement according to the current model is chosen as
the next candidate to acquire. While simple in formulation, the
approach can suffer from non-convergence to the global (or even
local) optimum of f , that is, the sampling scheme may fail to ac-
quire samples improving model information and may converge to
the optimum of an incorrect model f̂N . In this scenario, the ex-
ploratory error component of the expected convergence error in
(19) is left undiminished, leading to a large error.

This shortcoming of the greedy approach is overcome by the
Expected Improvement (EI) metric1 which explicitly accounts for
the information gained by sampling at a point x in addition to the
improvement in the objective value. The metric is computed as
the expectation of the objective value at x exceeding the previous
best f̂ opt

k ,

AEI(x| f̂k) = E
[
max( f̂ opt

k − f̂k(x),0)
]
. (23)

A nearly optimal rate of convergence to the global optimum
is achieved by the EI acquisition function26 under assumptions
of noise-free, smooth, differentiable underlying functions f , f̂k
in C2ν for any ν > 0.∗ For a Gaussian process model f̂k(x) ∼
N (µk(x),σ2

k (x)), the expected improvement can be written ex-
plicitly in terms of the predicted mean and variance as

AEI(x|µk,σk) = [ f̂ opt
k −µk(x)]Φ

(
f̂ opt
k −µk(x)

σk(x)

)

+σk(x)φ

(
f̂ opt
k −µk(x)

σk(x)

) (24)

where Φ and φ are the cumulative and probability density func-
tions for the standard normal distribution, respectively.

The expected improvement metric can be seen as a weighted
sum between the improvement in mean (µk(x)− f̂ opt

k ) and stan-
dard deviation σk(x) weighted by cumulative probability and
probability density functions respectively. The weighted standard
deviation term in (24) provides the acquisition function some
value in sampling points where σk(x) is large, thus promoting
exploration in the parameter space, even when the correspond-
ing point x has a low probability of improvement according to
APOI . This exploratory quality is known to guarantee asymptotic
convergence to the global optimum.26

∗C2ν denotes the space of real-valued functions that are differentiable 2ν times with
continuous derivatives.
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A generalized version of the expected improvement3 is com-
puted by using an integer power g of max( f̂ opt

k − f̂k(x),0) to com-
pute the generalized expected improvement (gEI) as

AgEI(x| f̂k) = E
[[

max( f̂ opt
k − f̂k(x),0)

]g]
(25)

Using a larger power g promotes the standard deviation terms
in the expected improvement and thus promotes more aggressive
exploration in the parameter space. For g = 0, AgEI is equal to
APOI and g = 1 gives AEI . For a general integer g and a Gaussian
process model f̂k(x)∼N (µk(x),σ2

k (x)), the generalized expected
improvement can be computed recursively using

AgEI(x|µk,σk,Dk) = [σk(x)]
g

g

∑
i=0

(−1)i
(

g
i

)(
f̂ opt
k −µk(x)

σk(x)

)g−i

Ti

(26)
with

T0 = Φ

(
f̂ opt
k −µk(x)

σk(x)

)
and T1 =−φ

(
f̂ opt
k −µk(x)

σk(x)

)

Another form of acquisition function used to tradeoff between
exploration and exploitation is given by the Lower Confidence
Bound (LCB),44

ALCB(x|µk,σk) = µk(x)−βkσk(x), (27)

with some parameter sequence βk > 0. The LCB assigns each point
an optimistic additive term as a constant βk multiple of the stan-
dard deviation at that point. This additive term promotes explo-
ration; the larger the βk, the more aggressive the exploration.
The factor βk may be fixed to a constant β throughout the itera-
tions. However, certain k-dependent βk sequences are shown to
provide theoretical convergence bounds for the optimization al-
gorithm.15,44 The proposed βk sequences gradually increase the
aggressiveness of the search as k increases, with growth on the
order of O(

√
lnk). The LCB acquisition function is motivated by

its simplicity for use with Gaussian process models and is shown
to perform at par with the expected improvement function.15,44

Unlike the above acquisition functions that are designed with
asymptotic convergence in mind,45 introduced the knowledge
gradient (KG) acquisition function to find a nearly optimal so-
lution with only a limited budget for iterations. For AKG(x| f̂k),
each new sample point is determined by assuming that it is the
last available function evaluation in the budget of the Bayesian
optimization algorithm. Thus the metric is designed to find the
point that maximizes the best possible improvement expected by
sampling a point x,

AKG(x| f̂k) = min
x′∈X

µk(x
′)−E( min

x′∈X
µk+1(x

′|xk+1 = x)). (28)

This equation relies on the closed-form update of the posterior
mean of the Gaussian process model when a new point (xk+1 =

x,y) is added to the training set for the model. The probability of
seeing a measurement y for the sample point xk+1 = x is taken to
be specified by the model f̂k ∼N (µk(x),σ2

k (x)) and the expecta-
tion is taken over this distribution. The closed-form expression of

the updated mean after adding a point (xk+1 = x,y) for a Gaussian
process model can be written as

µk+1(x
′|xk+1 = x) = µk(x

′)+Σ(x′,x)(Σ(x,x)+λ I)−1(y−µk(x))
(29)

for a kernel matrix function Σ(x′,x) specified for the Gaussian pro-
cess model and a noise covariance λ assumed for the measure-
ment noise in y.45 This closed-form expression can be maximized
as a function of x′ for any given x,y and the expectation over of
this maximum as a function of y is taken over the distribution
y ∼N (µk(x),σ2

k (x)). This overall computation for the KG acqui-
sition function can become computationally intractable and often
requires some form of randomized Monte-Carlo approximation.
The next point to acquire xk+1 is then obtained by maximizing
AKG over the candidate sample space, each evaluation of which
requires a Monte-Carlo approximation. This step makes the use
of the KG acquisition function computationally expensive.

In addition to the above, the acquisition functions can also be
supplemented with additional trust-region constraints or penal-
ties to enforce requirements such as model safety, safe explo-
ration, or dynamical constraints7–11 leading to further variants.

The above acquisition functions focus on driving down the ex-
ploratory error in (19) and make no explicit attempts at repeated
sampling to drive down prediction errors for noisy scenarios,
which leads to poor convergence performance when working with
noisy measurements.12

Latham et al.12 use a Monte-Carlo scheme of constructing
multiple models f̂ (i)k from artificially generated noise realizations
from the model f̂k. An averaged expected improvement using
each model is then computed as

AMC(x| f̂k) =
1
N

N

∑
i=1

AEI(x| f̂
(i)
k ). (30)

The averaged EI value over several noise realizations tries to
capture a more realistic value of the expected improvement, not
adversarially affected by any single noise realization. This ap-
proach promotes the repeated sampling required to improve the
predictive error component of the convergence error and thus
shows improved empirical performance.12

Huang et al.13 introduced the augmented EI acquisition func-
tion

AaEI(x) = AEI(x| f̂k)

(
1− ε

σ2
k (x)+ ε

)
(31)

where ε > 0 is a tolerance hyperparameter and σ2
k (x) is the vari-

ance prediction at x from the model f̂k. The multiplicative aug-
mentation to the expected improvement metric in (31) increases
the value assigned to points with high variance prediction σ2

k (x)
given by the model. The variance prediction σ2

k (x) asymptoti-
cally decreases to the noise variance σ2

n hyperparameter value
for a Gaussian process model with repeated sampling at x. The
augmentation thus captures the amount of resampling at x as an
internal state of the acquisition function and provides a way to
enforce resampling at points with high noise variance in order to
reduce predictive errors.

We consider a generalized form of the augmentation in (31)
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Fig. 2 Tetrahedral additives: A distribution of convergence perfor-
mance for augmented Expected Improvement AaugEI(x)-based Bayesian
optimization. A batch of 10 independent runs of 200 iterations is shown
with best-case, worst-case, and median performances.

and construct the generalized noise-augmented Expected Im-
provement as

AaEI = AEI(x| f̂k)

(
1− ε

σ2
k (x)+ ε

)p

(32)

for any integer p ≥ 0. The value p = 0 makes AaEI = AEI and,
with higher values of p, the augmentation sees a sharper increase
towards 1 as the variance σ2

k (x) increases. An improved conver-
gence error and robustness is observed as p is increased from 0 to
2 in Section 6.

The maximization of the expected improvement or augmented
expected improvement can be performed using a gradient-based
numerical optimizer. The gradient computations, although
tractable, increase the computational effort required. Also,
gradient-based methods tend to get stuck in local optima for the
acquisition functions, which tend to be multi-modal, i.e., have
multiple local and global maxima. The multiple maxima can
lead to the Bayesian optimizer getting stuck in a local explo-
ration region. These limitations can be overcome by treating
the acquisition function as a target probability distribution for a
Markov Chain Monte Carlo (MCMC) sampler.46 The MCMC sam-
pler can draw q samples for any integer q from a probability dis-
tribution proportional to the target acquisition function. Since
AaEI(x| f̂k) ≥ 0 for all x, the acquisition function can be directly
set as the target distribution and used to draw q samples from a
probability distribution proportional to AaEI(x| f̂k) with an MCMC
sampler. This approach allows a simple and direct extension of
the acquisition function to a batched sampling approach. Batched
sampling further promotes repeated sampling and helps reduce
prediction errors. Section 6 compares the convergence perfor-
mances for different batch sizes q.

6 Results
The Bayesian optimization algorithm from Section 3 is run on the
case studies for polymer nucleation described in Section 2. The
algorithm is run with a fixed budget of two thousand samples
and compared across ten independent runs for statistical charac-
terization of the convergence properties. A comparison is made

Fig. 3 Hexagonal additives: A distribution of convergence performance
for augmented Expected Improvement AaugEI(x)-based Bayesian opti-
mization. A batch of 10 independent runs of 200 iterations is shown
with best-case, worst-case, and median performances.

using different choices for the generalized noise-augmented ac-
quisition function (32), sample batch sizes q and with a prior-art
algorithm for Bayesian optimization in material discovery from
Ueno et al.22

The performance of the algorithm is compared using metrics
for optimality, convergence rate, and the quality metric Q to ac-
count for the reliability or expected variability in results across
different runs. The optimality of the result is characterized by
observing a normalized regret

∆ fopt/ση =

∣∣∣E[ f ](x̂opt
k )− f opt

true

∣∣∣
ση

(33)

where the ground truth estimates for the case studies from Sec-
tion 2 provide the required quantities E[ f ](x) as τ̂mean(x) from (3),
f opt
true as τ̂

opt
mean from (4) and ση as the reference standard deviation

from (6). The gridded NEMD data37,38 provides an estimate for
the ground truth for the two case studies and are used to char-
acterize the convergence of the algorithm using (33). The algo-
rithm, however, is not provided any knowledge of this underlying
ground truth.

6.1 Bayesian optimization with noise-augmented acquisi-
tion applied to the polymer nucleation case studies

Figures 2 and 3 show the typical convergence performance for the
algorithm over the two case studies of polymer nucleation pre-
sented in Section 2, using a batch size of 10 (q = 10) and a noise-
augmented expected improvement acquisition function (p = 2).

The noisy nature of the process implies that the Bayesian opti-
mization cannot guarantee a zero convergence error to the noise-
free optimal solution. Instead, the convergence error is compared
to the standard deviation of the noise using the normalization.

The presence of noise also implies that different independent
runs of the optimization see different realizations of the noise
and thus lead to different convergence paths towards the optima.
The algorithm’s performance is thus characterized in terms of the
observed distribution. Figures 2 and 3 show the convergence er-
ror distribution over a group of 10 independent runs each for
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(a) Tetrahedral case study: Parameters normalized with respect to silicon (b) Hexagonal case study: Parameters normalized with respect to graphene

Fig. 4 Distribution of estimated optimal candidates after 200 iterations of Bayesian optimization.

the tetrahedral and hexagonal additive groups respectively. The
median case shows the median error across runs. The best- and
worst-case performances show the minimum and maximum con-
vergence error seen across the different runs at each iteration.

In both cases, we observe a median error of less than one stan-
dard deviation of the process noise and a worst-case deviation
of less than three standard deviations. A sub-σ level of conver-
gence for the algorithm shows the algorithm’s effectiveness in es-
timating the optimal values with an accuracy level better than
the underlying process noise. We observe that, on average, the
algorithm performs at this sub-σ level. Even in the worst case,
the error in the optimal estimate remains with a 3−σ level of
the noise. The corresponding estimates of the optimal candidate
SW-parameters discovered are shown in Figs. 4a, 4b.

Figures 4a and 4b show the distribution of optimal candidate
estimates considered over 2000 sample acquisitions and ten runs
for the tetrahedral and hexagonal additive case studies, respec-
tively. Observing this distribution, as opposed to the final ter-
minal value of the optimization, provides additional insight into
the regions of the candidate space that the algorithm considers
as likely locations to find an optimal candidate. Since the set of
real, realizable crystals is only a subset of the continuous space
described by the UAFF parameters, the collection of crystals with
parameter values near or within this observed distribution pro-
vides the subset of candidates that are likely to achieve a close
to optimal nucleation rate. The distribution also provides a way
to account for any multi-modal nature in the optimal candidate
solution space.

We use the normalized UAFF parameter space described in Sec-
tion 2 to parameterize the candidate search space, with SW po-
tentials for the silicon and graphene crystals used as the normal-
ization constants for the tetrahedral and hexagonal cases, respec-
tively. The case study for tetrahedral additives is restricted to only
three out of the four UAFF parameters ((εAD,λSW ,σSW )) to main-
tain consistency with the ground truth data available.37 From the
results, the largest peak in the optimal candidate parameter dis-
tribution is observed to be around (0.98,1.05,0.85) for the tetra-
hedral case, with a larger spread of possible candidate values in
the λSW parameters. A similar spread is observed in the optimal

λSW candidate estimates for the hexagonal additive case as well
from Fig. 4b, thus indicating a lower sensitivity of the optimal
candidate to the λSW potential. The hexagonal candidates distri-
bution shows a peak at (1.1,0.41,0.66,1.4) with secondary peaks
for εSW and εAD at εSW = 0.36 and εAD = 1.

An optimal candidate normalized parameter of near 1 indicates
the suitability of silicon and graphene respectively as optimal ad-
ditive candidates for the two cases. Considering this distribution
of optimal candidates with peaks around (0.98,1.05,0.85) and
(1.1,0.41,0.66,1.4) thus suggests nearly optimal performance of
silicon and an optimal candidate away from graphene as a nu-
cleating agent. Both εSW and λSW are proportional to the rigid-
ity of the crystal and smaller values (0.41,0.66) in the case for
hexagonal crystals suggests a softer and more compliant material
than graphene would perform well as a nucleating agent for poly-
alkanes. This result is consistent with observations from Bourque
et al.38 and crystal growth processes observed in semiconduc-
tors47 where a higher compliance substrate allows for better crys-
tal growth despite relatively large substrate-semiconductor lattice
mismatch. The search for crystals with these specific deviations
in SW parameters is left as a direction for future exploration.

The results from Figs. 2 and 3 highlight the non-monotonic na-
ture of convergence of the optimization algorithm in the presence
of noisy measurements. This nonmonotonicity is expected as the
underlying Gaussian process model evolves in its estimate of what
it thinks the optimal value will be as more data and noise real-
izations are made available. An initial estimate of the optimum is
based on far fewer observations of the data and noise realizations.
It thus can easily be misguided by noise into creating an incorrect
model of the underlying ground truth, i.e., suffers due to higher
prediction errors. This occurrence results in a non-monotonic in-
crease in deviation from the unknown optimum value. As further
noise realizations are observed for any given candidate point, the
model corrects itself and gains a better estimate for the statistics
at the observed locations.
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Fig. 5 A comparison of median-case performance with varying augmen-
tation factors (p) for the acquisition function. p = 0 corresponds to the
conventional Expected Improvement acquisition strategy for Bayesian op-
timization.

Fig. 6 A comparison of worst-case performance with varying augmen-
tation factors (p) for the acquisition function. p = 0 corresponds to the
conventional Expected Improvement acquisition strategy for Bayesian op-
timization.

6.2 Comparison to prior-art and varying augmentation fac-
tors (p)

The noise-augmented acquisition function (32) is particularly de-
signed to promote a higher degree of exploration in regions where
fewer noise realizations have been observed to avoid getting
trapped with an incorrect model of the underlying ground truth
when a noise realization misguides the algorithm. This acquisi-
tion function may result in a slower convergence as the model
focuses on additional exploration to combat noise and not only
on the exploitation of the model, generated from initial noise re-
alizations, to search for optimal candidates. The augmented ac-
quisition function, however, provides higher overall stability with
improved median and worst-case performance.

Figures 5 and 6 show a comparison of the median and worst-
case performance obtained from the traditional Expected Im-
provement acquisition function (p = 0) to that of the augmented
Expected Improvement function (p= 1,2) in combating the noise-
driven predictive errors from misleading of the optimization algo-
rithm. A baseline comparison to the prior art using the toolbox
from Ueno et al.22 is provided.

For p = 0, a non-monotonic increase is observed in the devia-
tion away from optimum even after 2000 iterations of the algo-

Fig. 7 Comparing Model Quality (Q) for varying augmentation factors
(p) obtained from the test iterations with 35% of the sample budget
allotted for quality testing

rithm have been completed, which occurs due to the insufficient
exploration of noise realizations provided by the Expected Im-
provement metric.

As the power factor p is increased in the augmented acqui-
sition function, increased weight is provided to the exploration
of noise realizations. This exploration significantly improves the
worst-case performance, with fewer and smaller non-monotonic
deviations upon convergence for the p = 1 case and no observ-
able deviations upon convergence from the p = 2 case, indicating
that a sufficient exploration of the noise realizations is provided
by the augmented case (p = 2) before converging to an optimal
candidate. This improved stability in the algorithm prevents a
misleading result from being declared as optimal when the algo-
rithm is terminated in a run where the worst-case performance
might have been realized. This notion of reliability or quality of
the algorithm’s design choices is quantified by the quality metric
Q from (20).

Figure 7 shows the comparison for the four cases considered
above in terms of the quality metric Q(∆ f/ση ). The quality met-
ric shows the worst-case variance in the regret obtained at any
iteration in obtaining the test samples across the ten independent
runs of the algorithm for each design choice. 35% of the sample
budget, i.e., the last 700 samples of each run are reserved as the
test set to quantify the quality metric.

The quality metric shows a clear improvement in the reliability
of the algorithm as the augmentation factor (p) is increased from
0 to 2. The smaller the value of Q, the smaller the variability of
results obtained from the algorithm, thus higher the reliability.

6.3 Comparison across varying batch size (q)
Another important aspect in dealing with noisy and expensive ma-
terial discovery experiments is that experiments are typically per-
formed in batches. Thus the optimizer must provide a batch of
candidate samples at every iteration. The Bayesian optimization
algorithm is run with the noise-augmented acquisition function
with p = 2 for different choices of the sampling batch size q. Ten
independent runs are used to characterize the statistical perfor-
mance and quality (Q) of the algorithm for each choice of q. The
total number of samples drawn is kept constant at 2000 (sam-
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Fig. 8 Comparing Model Quality (Q) for varying batch sizes (q) obtained
from the test iterations with 35% of the sample budget allotted for quality
testing

ple budget N = 2000) to keep the results comparable. The total
number of iterations available to the optimizer is then given by
2000/q.

Figure 8 shows a comparison of the reliability or quality metric
(Q) across the different choices for the batch sizes considered.
The quality metric Q is evaluated over a test set containing the last
700 samples of each independent run for a given choice of q. The
figure clearly shows a marginal improvement in the algorithm’s
reliability as the batch size is increased from 1 to 20. A significant
loss in reliability is observed as the batch size is further increased
to 40.

As the batch size increases, a larger number of samples are in-
cluded in the model update at every iteration, which leads to a
faster accumulation of data and noise realizations on every iter-
ation. This makes the model updates less susceptible to noise on
any given iteration. The downside of larger batch sizes is that
there are fewer optimizer iterations (N/q) for a fixed budget of
N samples. The selection of batch size (q) is thus a tradeoff be-
tween these two factors when the total samples budget is kept
constant. Figure 8 shows this tradeoff in action with the marginal
improvement of reliability up to q = 20 and a significant drop of
reliability with q = 40, which leaves the algorithm with too few
(50) optimizer iterations.

Figures 9 and 10 compare the median and worst-case perfor-
mances of the algorithm with varying batch size q.

The median performance (Fig. 9) sees a nearly similar error
(around 0.5ση ) across the different choices for q. The small
changes in median performance upon termination are within a
small fraction of the noise standard deviation and are considered
statistically insignificant.

The worst-case performance (Fig. 10) however, shows consis-
tent convergence up to q = 20 and a significant degradation of
performance by several multiples of the noise standard deviation
for a batch size of 40. Such a degradation occurs due to an in-
sufficient number of optimization steps available to the algorithm
for q = 40.

In practice, it is often preferred to have experiments performed
in batches and thus observing consistent convergence perfor-
mance with the larger batch sizes such as q = 10 and q = 20 may

Fig. 9 Median case comparison: varying sample batch sizes (q), p = 2

Fig. 10 Worst-case comparison: varying sample batch sizes (q), p = 2

thus be considered optimal, as quantified by the quality metric Q
and the consistent results for the median and worst-case conver-
gence.

6.4 Observations from the numerical studies

Using the comparisons from Sections 6.2 and 6.3, a batch size of
q = 10 or q = 20, with p = 2, is observed to provide an adequate
tradeoff with good median and worst-case performance (sub-σ
and sub-3σ respectively, with an improved reliability or quality
metric Q.

The numerical studies were performed using ten independent
runs of the algorithm for each design choice, such as the choices
for p and q. Furthermore, each independent run is initialized with
an independent and randomly sampled initial training set which
further contributes to the independent and randomized conver-
gence paths taken by the algorithm across the different runs. The
quality metric Q thus captures the worst-case variability of the re-
sults across all such independent runs for any given design choice
of the algorithm and any sample in the last Ntest samples acquired
by a run being declared as the optimal candidate.

The Bayesian optimization with batched sampling and a noise-
augmented acquisition function thus provides an effective strat-
egy to achieve a sub-σ level of median and best-case convergence
in the presence of noise while maintaining a worst-case perfor-
mance within three standard deviations of the noise level. The
improved quality metric (Q) shows that the augmentation and
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batched sampling also lead to a lower sensitivity to factors such
as the choice of initial training set or the choice of the termination
iteration number.

7 Conclusions
This article explores the challenges in dealing with the process
or measurement noise in materials discovery approaches using
Bayesian optimization methods. The non-monotonic convergence
and noise-driven variability of outcomes across different runs of
the algorithm are shown to be significant factors to consider for
the design of a Bayesian optimization approach that is robust to
noise and a quality metric is introduced to quantify such variabil-
ity. The use of an augmented acquisition function and a batched
approach to sampling are both shown to be helpful in achiev-
ing improved robustness, and the median performance of the de-
signed approach is shown to achieve a sub-σ level of accuracy
in determining optimal candidates, while the worst-case perfor-
mance shows better than 3σ level of accuracy in two case studies
for additive discovery in polymer (polyethylene) nucleation.

The case studies consider the search for optimal additive candi-
dates using a united atomic force field model for search space pa-
rameterization in classes of tetrahedral and hexagonal additives,
respectively. The results suggest nearly optimal performance for
silicon in the class of tetrahedral crystals but suggest a candi-
date more compliant than graphene in their respective classes.
With the deviations observed in optimal parameters from Si and
graphene, a search for possibly better-matched crystals to the dis-
covered candidates is a direction for further research.

The augmented Bayesian optimization approach for materials
discovery in noisy processes is seen to be an effective approach to
minimize the number of expensive experimental or MD simula-
tion samples required while addressing the challenges of batched
sampling and robustness to noise.
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