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1). Two-valence-band model  

 

The valence band structure of SnTe can be modelled by considering that mainly two bands 

contribute to the transport: a parabolic heavy-hole band and a non-parabolic light-hole band, 

referred to as hereafter using the subscripts hh and lh, respectively. Assuming acoustic phonon 

scattering as the main scattering mechanism at 300 K, the thermopower is expressed as 
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where ∆𝑉= ∆𝐸/𝑘𝐵𝑇 is the energy offset between the two valence band maxima. In this relation, 

the choice 𝛼 = 0 makes the heavy-hole band parabolic. 𝛼 =  𝑘𝐵𝑇/𝐸𝑔 is the non-parabolicity 

parameter, 𝐸𝑔 is the energy gap and 𝑇 is the temperature. In this relation, the functions 𝐹.
𝑛

𝑙
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the generalized Fermi integral given by: 
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where 𝑓 is the Fermi-Dirac distribution and 𝜀 is the reduced energy of the carriers. The 

parameter 𝜉 is defined as 
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where 𝑚ℎℎ
∗  is the density-of-states effective mass of the heavy valence band, 𝑚𝑙ℎ

∗  is the density-

of-states effective mass of the light valence band, 𝐷ℎℎ is the heavy-valence-band acoustic 

deformation potential and 𝐷ℎℎ is the light-valence-band acoustic deformation potential. The 

equations for hole concentrations are: 
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The Hall factors 𝐴𝑙ℎ and 𝐴ℎℎ of the light and heavy-hole band, respectively, are given by: 
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where 𝐹𝑖 are the Fermi integrals of order 𝑖 and 𝐾 = 𝑚∥
∗/𝑚⊥

∗  is the ratio between the effective 

mass due to the anisotropy of the valence band at the L point of the Brillouin zone. These two 

effective masses are related to the density-of-states effective mass via: 
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where 𝑁𝑉 is the band degeneracy. The total Hall hole concentration 𝑝𝐻 is then given by: 

 

𝑝𝐻 =
[𝑏𝑝𝑙ℎ + 𝑝ℎℎ]2

[𝐴𝑙ℎ𝑏2𝑝𝑙ℎ + 𝐴ℎℎ𝑝ℎℎ]
 

 

where 𝑏 is the mobility ratio between the light-hole and heavy-hole valence bands.  

 In the calculations of the Ioffe-Pisarenko curve, we used the following values for the 

various band parameters, determined by fitting experimental values in Ref. 21 of the main text: 

𝐸𝑔 = 0.18 eV, 𝑚𝑙ℎ = 0.14𝑚0, 𝑚ℎℎ = 1.7𝑚0, ∆𝑉= 0.40 eV, 𝐾 = 4, 𝑏 = 4, 𝑁𝑉,𝑙ℎ = 4 and 

𝑁𝑉,ℎℎ = 12. The values of ∆𝑉, 𝑚𝑙ℎ and 𝑚ℎℎ slightly differ from those originally used by 

Brebrick et al. (0.35 eV, 0.168𝑚0 and 1.92𝑚0, respectively). However, the above-mentioned 

values enable to better account for the experimental data obtained on several series of doped 

and self-doped (that is, by Sn vacancies) SnTe samples. This model nevertheless yields 

qualitatively similar Ioffe-Pisarenko curves with its characteristic hump at high hole 

concentrations evidencing the important contribution of the second valence band to the 

transport.  
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Figure S1. Brillouin zone of the rock-salt, face -centered -cubic structure of SnTe, with the 

high-symmetry points labelled. The “ point” corresponds to the point, which is in the middle 

between the  and K points, a frequently -used convention in the literature [see e.g. S1, S2]. 
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2). Experimental and computational details 

 

 All the polycrystalline samples measured herein are those used in our previous study [S3]. 

Polycrystalline samples of Sn1.03-xInxTe with nominal compositions x = 0.0, 0.0005, 0.0015, 

0.0025, 0.0035, 0.0045, 0.0075, 0.0100 and 0.0200 were synthesized from direct reaction of 

stoichiometric quantities of elemental Sn, In and Te (5N, 99.999%) in evacuated silica tubes. 

Excess Sn was used to partly counterbalance the Sn vacancy concentration inherent to SnTe. 

The tubes, sealed under high vacuum, were placed in a vertical rocking furnace for 10h at 1100 

K. before being quenched in room-temperature water. The obtained ingots were hand-ground 

into fine powders inside an argon-filled glove box and subsequently consolidated by Spark 

Plasma Sintering (SPS) in a graphite die at 750 K for 10 mins under an uniaxial pressure of 65 

MPa. All the samples show a relative density of more than 96% of the theoretical density. The 

dense cylindrical pellets were then cut into rectangular bar-shaped samples of typical 

dimensions 822 mm3 for transport property measurements.  

 Electrical resistivity and Hall effect were measured at 5 K using the ac transport option 

of a physical property measurement system (PPMS, Quantum Design). The Hall resistivity 𝜌𝐻 

was determined by measurements of the transverse electrical resistivity 𝜌𝑥𝑦 under magnetic 

field reversal following the relation 𝜌𝐻 = [𝜌𝑥𝑦(+𝜇0𝐻) − 𝜌𝑥𝑦(−𝜇0𝐻)] 2⁄ . The Hall coefficient 

𝑅𝐻 was derived from the slope of the 𝜌𝐻(𝜇0𝐻) data for fields – 1 ≤ 𝜇0𝐻 ≤ 1T. The Hall carrier 

concentration 𝑝𝐻 and the Hall mobility 𝜇𝐻 were determined from the single-band relations 𝑝𝐻 =

𝑟𝐻 𝑅𝐻⁄ 𝑒 and 𝜇𝐻 = 𝑅𝐻 𝜌⁄  where 𝑒 is the electron charge and 𝑟𝐻 is the Hall factor. In non-

degenerate samples, this factor can significantly deviate from the conventionally-used value of 

1, depending on the main scattering mechanism (𝑟𝐻 can vary up to 1.18 and 1.93 for acoustic 

phonon and ionized impurity scattering, respectively). In contrast, in degenerate samples, the 

deviations are less significant and the values of 𝑟𝐻 can be considered to be very close to 1, with 

possible deviations being at most 10%. However, in SnTe, it was shown that the contribution 

of the second, heavy valence band can result in deviations of 𝑟𝐻 from 1 by up to 40% [S4,S5]. 

In addition, the RL may lead to additional variations in 𝑟𝐻 due to the significant distortion of 

the valence band structure. In any case, even if the hole concentrations reported herein can show 

some deviations from the actual hole concentrations, this effect cannot account for the 

deviations of the present data from the Ioffe-Pisarenko curve and for the observed strong 

decrease in the mobility by an order of magnitude. Because at present exact calculations of 𝑟𝐻 
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are not possible, we thus made the reasonable assumption that 𝑟𝐻 = 1 due to the degenerate 

nature of our samples.  

 Electronic structure calculations were done using the Korringa-Kohn-Rostoker (KKR) 

method with the coherent potential approximation (CPA), applied to account for the chemical 

disorder. The Munich SPR-KKR package was used [S6,S7]. The experimental rock-salt crystal 

structure and lattice parameter (a = 6.32 Å) were used. Regular k-point mesh was used in 

calculations, with 3000 k-points for the self-consistent cycle, 4 – 20105 for the density of states 

(DOS) and Bloch spectral density functions (BSF) and 2 – 10106 for conductivity calculations 

(number of points given in the irreducible part of the Brillouin zone, larger number of points 

were required for lower impurity concentrations). Conductivity calculations included the vertex 

corrections. The crystal potential was constructed in the framework of the local density 

approximation (LDA), using Vosko, Wilk and Nussair [S8] formula for the exchange-

correlation part. For all atoms, angular momentum cut-off lmax = 3 was set and full-potential 

full-relativistic calculations were performed for DOS and BSF. For the conductivity 

calculations, spherical potential approximation was employed. High convergence limits were 

put on the self-consistent cycle (10-5 Ry for the Fermi level EF and for the total energy). The 

position of EF was obtained using the Lloyd formula. 

 

3). Additional information about the Bloch spectral density functions (BSF) 

 

Bloch spectral density functions 𝐴(𝒌, 𝐸) allow to investigate the electronic dispersion 

relations in disordered materials, where electrons are scattered due to the lack of translational 

symmetry and presence of impurities (wave vector is not a conserved quantum number 

anymore). In such a case, the traditional description of the electronic structure, using the 

electronic dispersion relations 𝐸(𝒌), have to be generalized, and the KKR-CPA technique 

allows to do it by calculating BSF [S6,S9]. The meaning of BSF is sketched in Figure S2. 

In the case of a perfect crystalline material (upper panel of Figure S2), BSF for a single wave 

vector k0 (and one spin direction) is a Dirac delta function of energy: 𝐴(𝒌𝟎, 𝐸)  = 𝛿(𝐸 − 𝐸𝒌𝟎
), 

thus it is zero for all energies except the point 𝐸0, where electron has its energy eigenvalue. The 

“peak” in the 𝛿(𝐸 − 𝐸𝒌𝟎
) function shows the position of an infinitely narrow electronic band, 

with infinite life time of the Bloch electrons (no scattering takes place at T = 0 K in a perfect 

crystal). The name “spectral density function” also describes another characteristic of the BSF 

as k-resolved density of states: the integral of 𝐴(𝒌𝟎, 𝐸) over all energies is equal to 1, i.e. the 

number of electronic states available at 𝒌𝟎 for each spin direction (in the case of a hypothetical 
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single-band material, while in the multi-band case, each band/BSF contributes 1 state per spin), 

and the integral over all k gives the usual density of states function [S9]. In non-magnetic 

materials, as in our case, BSFs are added for both spin directions, and the corresponding 

integrals are equal to 2. 

 

 

 

Figure S2. Schematic explanation of the relation between the Bloch spectral density functions 

𝐴(𝒌, 𝐸) and electronic bands E(k) in the case of idea crystal and crystal with impurities. 

 

In the case where impurities are present in the material (bottom panel of Figure S2), 

spectral function broadens and in most cases it adopts the shape of the Lorentz function: 

𝐴(𝒌𝟎, 𝐸) =
1

𝜋

1

2
𝛥

(𝐸−𝐸0)2+(
1

2
𝛥)

2, 

where 𝐸0 is the Lorentzian peak position, which defines the band center, and 𝛥 is the full width 

at half maximum (FWHM), which describes the strength of the impurity-induced scattering, 

visualized as the band smearing effect. In such a case, the electronic lifetime 𝜏 becomes finite 

and is related to the FWHM of the spectral function as 𝜏 =
ℏ

𝛥
 [S10]. Of note, the electronic 

lifetime corresponds here to the Boltzmann relaxation time, the equivalence of which can be 

demonstrated within the KKR-CPA framework [S10]. The stronger is the impurity-induced 

scattering, the broader becomes the spectral function and more smeared the band structure 
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picture. The situation is more complicated for resonant impurities, as BSF becomes very broad 

and non-Lorentzian in shape (cf. Figure 3). As a consequence, relaxation time is not well 

defined, and thus, only rough estimations of  may be obtained. This is the case studied in our 

work, as shown in Figure 3. Nevertheless, the Kubo-Greenwood formalism incorporated into 

KKR-CPA method [S6,S10] allows to calculate the T = 0 K electrical conductivity even for 

such a case. 

 

 

 

Figure S3. Charge carrier mobility as a function of the Mn content in Sn1-xMnxTe, calculated 

in two ways: at each point, the VacSn concentration was adjusted to match the carrier 

concentration to the experimental one (up to 1 %, see Table 1), or with 0.5% VacSn 

concentration kept constant along the series. Comparison to the experimental points should be 

done using the “adjusted VacSn concentration” series, while the calculation for the “fixed VacSn 

concentration” series shows a smooth monotonic reduction of the hole mobility with increasing 

the Mn content. The experimental data points were taken from Refs. [S11,S12,S13]. The 

comparison between these datasets also shows that the uncertainty in vacancy concentrations 

does not significantly affect the observed trend.  
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Figure S4. Temperature dependence of the electrical resistivity 𝜌 of the polycrystalline samples 

Sn1.03-xInxTe for 0.0  x  0.02. The samples on which these data were measured are the same 

as those reported in our prior study [S3]. The change of slope, visible between 75 and 100 K 

for x  0.0025, is likely due to the well-documented displacive ferroelectric transition 

[S14,S15,S16] that varies with the hole concentration. This transition is expected to only 

slightly affect the residual resistivity values. The metallic character that persists across the entire 

In concentration range evidences the absence of activated-like behavior at low temperatures 

that may arise from the presence of energy barriers at the grain boundaries [S17,S18], making 

the residual resistivity a well-defined and relevant quantity in the present series.  
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