Electronic Supplementary Material (ESI) for Materials Horizons. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Direct formation of interlayer exciton in two-dimensional van der

Waals heterostructures

Xianghong Niu¹, Shanshan Xiao³, Dazhong Sun¹, Anqi Shi³, Zhaobo Zhou², Wei Chen¹, Xing'ao

Li^{1,3}, Jinlan Wang^{2*}

 ¹ New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
² School of Physics, Southeast University, Nanjing 211189, China
³ Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China

*Corresondence to: jlwang@seu.edu.cn

Figure S1 Projection-resolved band structure of WS. Red and blue indicate the projection onW and S atoms, respectively.

Figure S2 Projection-resolved band structure of MoSe₂. Red and blue indicate the projection on Mo and Se atoms, respectively.

Figure S3 Projection-resolved band structure of WSe₂. Red and blue indicate the projection on W and Se atoms, respectively.

Figure S4 Band structure of (a) β -Sb, (b) InSe, (c) MoS₂, (d) WS₂, (e) MoSe₂ and (f) WSe₂. The energy bands of different systems are aligned to the same vacuum level.

Figure S5 Electronic structure of $InSe/\beta$ -Sb heterostructure with interlayer distance of 15 Å. The large interlayer distance indicates that there is no interlayer interaction between InSe and β -Sb layer.

Figure S6 Under lateral compressive stress -1%: The band structure of (a) InSe/ β -Sb heterostructure, (b) β -Sb and (c) InSe sublayer, respectively. The bands plotted in red and blue in (a) denote the bands dominated by β -Sb and InSe layer, respectively. The square of transition dipole moment between the highest valence band and the lowest conduction band for (d) InSe/ β -Sb heterostructure, and individual (e) β -Sb, (f) InSe layers, respectively. Photo-absorption properties of (g) InSe/ β -Sb heterostructure and individual (h) β -Sb, (i) InSe layers, respectively.

Figure S7 Under lateral compressive stress -2%: The band structure of (a) InSe/ β -Sb heterostructure, (b) β -Sb and (c) InSe sublayer, respectively. The bands plotted in red and blue in (a) denote the bands dominated by β -Sb and InSe layer, respectively. The square of transition dipole moment between the highest valence band and the lowest conduction band for (d) InSe/ β -Sb heterostructure, and individual (e) β -Sb, (f) InSe layers, respectively. Photo-absorption properties of (g) InSe/ β -Sb heterostructure and individual (h) β -Sb, (i) InSe layers, respectively.

Figure S8 Under lateral compressive stress -3%: The band structure of (a) InSe/ β -Sb heterostructure, (b) β -Sb and (c) InSe sublayer, respectively. The bands plotted in red and blue in (a) denote the bands dominated by β -Sb and InSe layer, respectively. The square of transition dipole moment between the highest valence band and the lowest conduction band for (d) InSe/ β -Sb heterostructure, and individual (e) β -Sb, (f) InSe layers, respectively. Photo-absorption properties of (g) InSe/ β -Sb heterostructure and individual (h) β -Sb, (i) InSe layers, respectively.

Figure S9 Under lateral tensile stress -4%: The band structure of (a) β -Sb and (b) InSe sublayer, respectively. The square of transition dipole moment between the highest valence band and the lowest conduction band for individual (c) β -Sb, (d) InSe layers, respectively. Photo-absorption properties of individual (e) β -Sb, (f) InSe layers, respectively.

Figure S10 Under lateral tensile stress 1%: The band structure of (a) InSe/ β -Sb heterostructure, (b) β -Sb and (c) InSe sublayer, respectively. The bands plotted in red and blue in (a) denote the bands dominated by β -Sb and InSe layer, respectively. The square of transition dipole moment between the highest valence band and the lowest conduction band for (d) InSe/ β -Sb heterostructure, and individual (e) β -Sb, (f) InSe layers, respectively. Photo-absorption properties of (g) InSe/ β -Sb heterostructure and individual (h) β -Sb, (i) InSe layers, respectively.

Figure S11 Under lateral tensile stress 2%: The band structure of (a) InSe/ β -Sb heterostructure, (b) β -Sb and (c) InSe sublayer, respectively. The bands plotted in red and blue in (a) denote the bands dominated by β -Sb and InSe layer, respectively. The square of transition dipole moment between the highest valence band and the lowest conduction band for (d) InSe/ β -Sb heterostructure, and individual (e) β -Sb, (f) InSe layers, respectively. Photo-absorption properties of (g) InSe/ β -Sb heterostructure and individual (h) β -Sb, (i) InSe layers, respectively.

Figure S12 Under lateral tensile stress 3%: The band structure of (a) InSe/ β -Sb heterostructure, (b) β -Sb and (c) InSe sublayer, respectively. The bands plotted in red and blue in (a) denote the bands dominated by β -Sb and InSe layer, respectively. The square of transition dipole moment between the highest valence band and the lowest conduction band for (d) InSe/ β -Sb heterostructure, and individual (e) β -Sb, (f) InSe layers, respectively. Photo-absorption properties of (g) InSe/ β -Sb heterostructure and individual (h) β -Sb, (i) InSe layers, respectively.

Figure S13 Under lateral tensile stress 4%: The band structure of (a) β -Sb and (b) InSe sublayer, respectively. The square of transition dipole moment between the highest valence band and the lowest conduction band for individual (c) β -Sb, (d) InSe layers, respectively. Photo-absorption properties of individual (e) β -Sb, (f) InSe layers, respectively.

Figure S14 Band structure of $MoS_2/MoSe_2$ heterostructure. The bands plotted in red and blue denote the bands dominated by MoS_2 and $MoSe_2$ layer, respectively. The Fermi level is shifted to 0 eV. The unit cell of MoS_2 and $MoSe_2$ are used to construct the heterostructure. The lattice parameter of $MoS_2/MoSe_2$ heterostructure is 3.23 Å, and the miss-matched rate is only 1.9%.

Figure S15 Photo-absorption properties of individual MoS_2 , $MoSe_2$ layers, and $MoS_2/MoSe_2$ heterostructure.

Figure S16 Band structure of MoS_2/WSe_2 heterostructure. The bands plotted in red and blue denote the bands dominated by MoS_2 and WSe_2 layer, respectively. The Fermi level is shifted to 0 eV. The unit cell of MoS_2 and WSe_2 are used to construct the heterostructure. The lattice parameter of MoS_2/WSe_2 heterostructure is 3.23 Å, and the miss-matched rate is only 1.9%.

Figure S17 Photo-absorption properties of individual MoS_2 , WSe_2 layers, and MoS_2/WSe_2 heterostructure.

Figure S18 Band structure of $MoSe_2/WS_2$ heterostructure. The bands plotted in red and blue denote the bands dominated by $MoSe_2$ and WS_2 layer, respectively. The Fermi level is shifted to 0 eV. The unit cell of $MoSe_2$ and WS_2 are used to construct the heterostructure. The lattice parameter of $MoSe_2/WS_2$ heterostructure is 3.23 Å, and the miss-matched rate is only 1.9%.

Figure S19 Photo-absorption properties of individual $MoSe_2$, WS_2 layers, and $MoSe_2/WS_2$ heterostructure.

Figure S20 Band structure of WS_2/WSe_2 heterostructure. The bands plotted in red and blue denote the bands dominated by WS_2 and WSe_2 layer, respectively. The Fermi level is shifted to 0 eV. The unit cell of WS_2 and WSe_2 are used to construct the heterostructure. The lattice parameter of WS_2/WSe_2 heterostructure is 3.23 Å, and the miss-matched rate is only 1.9%.

Figure S21 Photo-absorption properties of individual WS_2 , WSe_2 layers, and WS_2/WSe_2 heterostructure.

Figure S22 Band structure of $MoSe_2/WSe_2$ heterostructure. The bands plotted in red and blue denote the bands dominated by WS_2 and WSe_2 layer, respectively. The Fermi level is shifted to 0 eV. The unit cell of WS_2 and WSe_2 are used to construct the heterostructure. The lattice parameter of WS_2/WSe_2 heterostructure is 3.29 Å, and there is no miss-matched rate.

Figure S23 Photo-absorption properties of individual MoSe₂, WSe₂ layers, and MoSe₂/WSe₂ heterostructure.

Figure S24 Band structure of MoS_2/β -Sb heterostructure. The bands plotted in red and blue denote the bands dominated by β -Sb and MoS_2 layer, respectively. The Fermi level is shifted to 0 eV. The 3×3 supercell of β -Sb and the 4×4 supercell of MoS_2 are used to construct the heterostructure. The lattice parameter of MoS_2/β -Sb heterostructure is 12.61 Å, and the miss-matched rate is only 2%.

Figure S25 Photo-absorption properties of individual MoS_2 , β -Sb layers, and MoS_2/β -Sb heterostructure.

Figure S26 Band structure of WS₂/ β -Sb heterostructure. The bands plotted in red and blue denote the bands dominated by β -Sb and WS₂ layer, respectively. The Fermi level is shifted to 0 eV. The 3×3 supercell of β -Sb and the 4×4 supercell of WS₂ are used to construct the heterostructure. The lattice parameter of WS₂/ β -Sb heterostructure is 12.68 Å, and the miss-matched rate is only 2.5%.

Figure S27 Photo-absorption properties of individual WS₂, β -Sb layers, and WS₂/ β -Sb heterostructure.

Figure S28 Band structure of $MoSe_2/\beta$ -Sb heterostructure. The bands plotted in red and blue denote the bands dominated by β -Sb and $MoSe_2$ layer, respectively. The Fermi level is shifted to 0 eV. The 4×4 supercell of β -Sb and the 5×5 supercell of $MoSe_2$ are used to construct the heterostructure. The lattice parameter of $MoSe_2/\beta$ -Sb heterostructure is 16.54 Å, and the miss-matched rate is only 0.5%.

Figure S29 Photo-absorption properties of individual MoSe₂, β -Sb layers, and MoSe₂/ β -Sb heterostructure.

Figure S30 Band structure of $MoSe_2/InSe$ heterostructure. The bands plotted in red and blue denote the bands dominated by InSe and $MoSe_2$ layer, respectively. The Fermi level is shifted to 0 eV. The 4×4 supercell of InSe and the 5×5 supercell of MoSe₂ are used to construct the heterostructure. The lattice parameter of MoSe₂/InSe heterostructure is 16.41 Å, and the miss-matched rate is only 0.8%.

Figure S31 Photo-absorption properties of individual $MoSe_2$, InSe layers, and $MoSe_2/$ InSe heterostructure.

Figure S32 Band structure of WSe₂/InSe heterostructure. The bands plotted in red and blue denote the bands dominated by InSe and WSe₂ layer, respectively. The Fermi level is shifted to 0 eV. The 4×4 supercell of InSe and the 5×5 supercell of WSe₂ are used to construct the heterostructure. The lattice parameter of WSe₂/InSe heterostructure is 16.50 Å, and the miss-matched rate is only 1.3%.

Figure S33 Photo-absorption properties of individual WSe₂, InSe layers, and WSe₂/InSe heterostructure.

Figure S34 Band structure of InSe/BP heterostructure. The bands plotted in red and blue denote the bands dominated by BP and InSe layer, respectively. The Fermi level is shifted to 0 eV. The rectangular supercell cell is constructed using a 3×5 unit rectangular cell of BP and a 2×4 unit rectangular cell of InSe to minimize the lattice mismatch. The lattice parameters of the BP/InSe supercell are determined as 13.8 and 16.4 Å in the x and y directions, respectively, which induces a maximum strain in both the BP and InSe lattices of ~2%.

Figure S35 Photo-absorption properties of individual InSe, BP layers, and InSe/BP heterostructure.

To explore optical properties, we employ the energy-dependent dielectric functions to investigate the optical absorption of isolate InSe, β -Sb layer, and InSe/ β -Sb heterostructure. The dielectric matrix is determined by the following equation, ¹

$$\varepsilon_{\alpha\beta}(\omega) = \frac{4\pi^2 e^2}{\Omega} \lim_{q \to 0} \frac{1}{q^2} \sum_{c,v,\mathbf{k}} 2w_\mathbf{k} \delta(\varepsilon_{c\mathbf{k}} - \varepsilon_{v\mathbf{k}} - \omega) \times \left\langle u_{c\mathbf{k} + e_\alpha \mathbf{q}} \mid u_{v\mathbf{k}} \right\rangle \left\langle u_{c\mathbf{k} + e_\beta \mathbf{q}} \mid u_{v\mathbf{k}} \right\rangle^* \tag{1}$$

Where Ω is the volume of the primitive cell, q is the electron momentum operator, v and c are the valence and conduction band states, respectively, ω_k is the k point weight, ε_{ck} , ε_{vk} and μ_{ck} , μ_{vk} are the eigenvalues and wave-functions at the k point, respectively, and e_{α} , e_{β} are the unit vectors for the three Cartesian directions.

The binding energy is defined as $E_b = E_{InSe} + E_{\beta-Sb} - E_{InSe/\beta-Sb}$, where, E_{InSe} , $E_{\beta-Sb}$ and $E_{InSe/\beta-Sb}$ represent the total energy of isolated InSe and β -Sb monolayer, and InSe/ β -Sb heterostructure, respectively.

References

1 Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J. & Bechstedt, F. Linear Optical Properties in The Projector-augmented Wave Methodology. *Phys. Rev. B* **73**, 045112 (2006).