Electronic Supplementary Material (ESI) for Materials Horizons. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Origin of anisotropic-strain-driven photoresponse enhancement in inorganic-halide-based self-powered flexible photodetectors

Da Bin Kim,^a Ju Han,^a Ye Seul Jung,^a Kwan Sik Park,^a Youngseo Park,^b Junseok Heo^b and Yong Soo Cho^{*a}

^aDepartment of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea ^bDepartment of Electrical and Computer Engineering, Ajou University, Suwon 16499, Korea

*Corresponding author: ycho@yonsei.ac.kr

Fig. S1. Estimation procedure of (a) neutral plane and (b) in situ strain ε_i , according to the equations used for the estimation with the definitions of parameters.

Fig. S2. (a) Surface SEM images and (b) cross-sectional images of CsPbBr₃ thin films processed with in situ strain ε_i from -0.81% to +0.81%.

Fig. S3. Variations in (a) average grain size and (b) thickness of the CsPbBr₃ thin films processed with in situ strain ε_i from -0.81% to +0.81%.

Fig. S4. HR-XRD patterns of the CsPbBr₃ thin films processed with different in situ strain.

Fig. S5. Dependence of in situ strain ε_i with the estimated stress σ for the strained CsPbBr₃ thin films. Here, σ was calculated according to the biaxial strain model using the following equation¹ of

Here, σ was calculated according $\sigma = \left[2C_{13} - C_{33}\frac{(C_{11} + C_{12})}{C_{13}}\right]\frac{(b - b_0)}{b_0}$, where C_{ij} is the elastic stiffness constant of CsPbBr₃ (*i* and *j* = 1,

Reference

1. Choi, H.J., Jung, Y.S., Han, J., and Cho, Y.S. (2020). In-situ stretching strain-driven high piezoelectricity and enhanced electromechanical energy-harvesting performance of a ZnO nanorod-array structure. Nano Energy 72, 104735.

2. Lee, J.H., Deng, Z., Bristowe, N.C., Bristowe, P.D., and Cheetham, A.K. (2018). The competition between mechanical stability and charge carrier mobility in MA-based hybrid perovskites: Insight from DFT.J. Mater. Chem. C 6, 12252-12259.

Table S1. Structural information of the strained CsPbBr3 thin films, which were extracted from the HR-XRD results.

In situ strain \mathcal{E}_i (%)	Lattice constant (Å)			Volume	ΔV	Stress
	а	b	с	V (Å ³)	(%)	σ (MPa)
-0.81	8.24607	11.67378	8.25939	795.07	-0.72	-32.6
-0.53	8.25939	11.69552	8.25718	797.63	-0.40	-19.2
0	8.27340	11.72634	8.25475	800.85	0.00	0.0
+0.53	8.28594	11.75148	8.25368	803.68	0.35	15.4
+0.81	8.29118	11.76146	8.25358	804.86	0.50	21.6

Table S2. Estimated values of strain field over 25-mm-long CsPbBr₃ thin films, which depend on the applied in situ strain ranging from -0.81% to +0.81%.

In situ strain (%)	-0.81	-0.53	0	+0.53	+0.81
	0.00	-0.00	0.00	0.00	0.00
0	0.00	-0.00	0.00	0.00	0.00
0.5	-0.03	-0.02	0.00	0.02	0.03
1	-0.07	-0.04	0.00	0.04	0.07
1.5	-0.10	-0.07	0.00	0.07	0.10
2	-0.12	-0.09	0.00	0.09	0.12
2.5	-0.16	-0.11	0.00	0.11	0.16
3	-0.19	-0.13	0.00	0.13	0.19
3.5	-0.22	-0.14	0.00	0.14	0.22
4	-0.26	-0.16	0.00	0.16	0.26
4.5	-0.29	-0.19	0.00	0.19	0.29
5	-0.32	-0.21	0.00	0.21	0.32
5.5	-0.35	-0.23	0.00	0.23	0.35
6	-0.38	-0.25	0.00	0.25	0.38
6.5	-0.41	-0.27	0.00	0.27	0.41
7	-0.45	-0.29	0.00	0.29	0.45
7.5	-0.48	-0.32	0.00	0.32	0.48
8	-0.51	-0.34	0.00	0.34	0.51
8.5	-0.55	-0.36	0.00	0.36	0.55
9	-0.57	-0.38	0.00	0.38	0.57
9.5	-0.60	-0.40	0.00	0.40	0.60
10	-0.64	-0.42	0.00	0.42	0.64
10.5	-0.68	-0.44	0.00	0.44	0.68
11	-0.71	-0.47	0.00	0.47	0.71
11.5	-0.74	-0.49	0.00	0.49	0.74
12	-0.78	-0.51	0.00	0.51	0.78
12.5	-0.81	-0.53	0.00	0.53	0.81
13.0	-0.78	-0.51	0.00	0.51	0.78
13.5	-0.74	-0.49	0.00	0.49	0.74
14.0	-0.71	-0.47	0.00	0.47	0.71
14.5	-0.68	-0.44	0.00	0.44	0.68
15	-0.64	-0.42	0.00	0.42	0.64
15.5	-0.60	-0.40	0.00	0.40	0.60
16	-0.57	-0.38	0.00	0.38	0.57
16.5	-0.55	-0.36	0.00	0.36	0.55
17	-0.51	-0.34	0.00	0.34	0.51
17.5	-0.48	-0.32	0.00	0.32	0.48
18	-0.45	-0.29	0.00	0.29	0.45
18.5	-0.41	-0.27	0.00	0.27	0.41
19	-0.38	-0.25	0.00	0.25	0.38
19.5	-0.35	-0.23	0.00	0.23	0.35
20	-0.32	-0.21	0.00	0.21	0.32
20.5	-0.29	-0.19	0.00	0.19	0.29
21	-0.26	-0.16	0.00	0.16	0.26
21.5	-0.20	-0.14	0.00	0.14	0.20
21.5	-0.19	-0.13	0.00	0.13	0.19
22	-0.16	-0.11	0.00	0.11	0.16
22.3	-0.12	-0.00	0.00	0.00	0.10
23	-0.10	-0.07	0.00	0.07	0.12
23.3			0.00	0.07	0.10
24	-0.07	_0.04	0.00	0.04	0.07
24.3	-0.03	-0.02	0.00	0.02	0.03
25	0.00	0.00	0.00	0.00	0.00

Fig. S6. Photocurrent-time behavior for photodetectors based on the strained CsPbBr₃ thin films under various light intensities from 0.47 to 11.0 mWcm⁻².

Fig. S7. Noise spectral density as a function of frequency for the strained CsPbBr₃ photodetectors.

Fig. S8. Normalized photoresponse curves obtained at a fixed frequency of 10 kHz using a 470 nmlight source for the strained CsPbBr₃ photodetectors.

Fig. S9. (a) The photocurrent I_{ph} -time behavior of the +0.81%-strained CsPbBr₃ photodetector after repetitive bending up to 8000 cycles at a compressive bending strain of ~1.01%, (b) photocurrent retention compared to the initial I_{ph} with the progress of bending operation up to 8000 cycles, (c) normalized photocurrent-time and (d) HR-XRD patterns of the +0.81%-strained CsPbBr₃ photodetector after atmosphere exposure for 10 days at room temperature with a relative humidity of 60±5%, and (e) the photocurrent detected with the extended time of 20 h under the continuous light illumination at 4.71 mWcm⁻² for the +0.81%-strained CsPbBr₃ photodetector.

Fig.S10. Absorption spectra of the CsPbBr₃ thin films processed with in situ strain ε_i ranging from – 0.81% to +0.81%.

Table S3. Energy band levels with respect to the vacuum level as determined by the UPS spectra (here, SECO is the secondary electron cut-off region, E_F is the Fermi level, LBE is the low binding energy, E_v is the valence band edge, E_g is the optical energy bandgap, and E_c is the conduction band edge)

In situ strain ε_i (%)	SECO	E_F	LBE	E_{v}	E_g	E_c
-0.81	17.408	-3.792	1.80	-5.592	2.317	-3.275
-0.53	17.203	-3.997	1.85	-5.847	2.324	-3.523
0	17.163	-4.037	1.90	-5.937	2.328	-3.609
+0.53	17.077	-4.123	1.95	-6.073	2.336	-3.737
+0.81	16.916	-4.284	2.00	-6.284	2.340	-3.944

Fig. S11. Photocurrent as a function of incident wavelength for the strained CsPbBr₃ photodetectors.

Table S4. Estimated variations of crystal-structural attributes in the perovskite CsPbBr₃ structure for the different in situ strain ε_i ranging from -0.81% to +0.81%.

In situ strain ε_i (%)	-0.81	-0.53	0	+0.53	+0.81
Average Pb–Br bond length (Å)	2.9681	2.9713	2.9753	2.9787	2.9802
PbBr ₆ octahedron volume (Å ³)	34.8599	34.9718	35.1131	35.2372	35.2890
Pb–Br–Pb _{equatorial} bond angle (°)	164.3206	164.3530	164.3977	164.4322	164.4453
Pb–Br–Pb _{apical} bond angle (°)	156.6900	156.6833	156.6724	156.6643	156.6613

Fig. S12. Time-dependent photoresponse of the photodetectors processed with no in situ strain, but subject to post-bending in either (a) concave or (b) convex manner to create compressive or tensile strain, respectively. The photocurrent was measured at the light intensity P of 11.0 mW/cm² in the state of the post-bending.