## A New Strategy for Improving the Electrochemical Performance of Perovskite Cathode: Pre-calcining the Perovskite Oxide Precursor in Nitrogen Atmosphere Jing Chen<sup>a</sup>, Zhenxiang Zhao<sup>a</sup>, Yu Feng<sup>a</sup>, Xuzhuo Sun<sup>a</sup>, Bo Li<sup>a</sup>, Dongjin Wan<sup>a</sup>, Yuan

Tan<sup>b,\*</sup>

<sup>a</sup>School of Chemistry and Chemical Engineering, Henan University of Technology,

Zhengzhou 450001, China

<sup>b</sup>The Key Laboratory of Optoelectronic Chemical Materials and Devices, School of

Chemical and Environmental Engineering, Jianghan University, Wuhan 430056,

China

| Table 51 Structural parameters calculated by AND Spectrum |         |         |         |         |
|-----------------------------------------------------------|---------|---------|---------|---------|
| sample                                                    | SSC-400 | SSC-600 | SSC-800 | SSC-air |
| a(Å)                                                      | 5.406   | 5.413   | 5.408   | 5.407   |
| b(Å)                                                      | 7.551   | 7.539   | 7.612   | 7.508   |
| c(Å)                                                      | 5.324   | 5.348   | 5.342   | 5.364   |
| V(nm <sup>3</sup> )                                       | 216.48  | 217.96  | 219.96  | 217.80  |

 Table S1
 Structural parameters calculated by XRD Spectrum

 Table S2
 Oxygen non-stoichiometry of SSC powders at room temperature

| Atmosphere,T/°C        | n <sub>0</sub> | $\delta_0$ |
|------------------------|----------------|------------|
| Untread                | 2.90           | 0.10       |
| N <sub>2</sub> , 400°C | 2.90           | 0.10       |
| N <sub>2</sub> , 600°C | 2.89           | 0.11       |

Table S3 The result parameters calculated by XPS fitting Spectrum of Co 2p

|                       | Co <sup>3+</sup> |            | Co <sup>4+</sup> |            | Oxygen           |
|-----------------------|------------------|------------|------------------|------------|------------------|
| Conditions            | B.E/eV           | Proportion | B.E/eV           | Proportion | nonstoichiometry |
|                       |                  | %          |                  | %          |                  |
| Untreated             | 780.1-795.1      | 83.56      | 782.3-797.1      | 16.44      | 2.8996           |
| N <sub>2</sub> ,400°C | 780.0-795.1      | 73.67      | 782.2-797.1      | 26.33      | 2.9006           |
| N <sub>2</sub> ,600°C | 780.0-795.1      | 62.88      | 781.75-797.1     | 37.12      | 2.8877           |
| N <sub>2</sub> ,800°C | 780.2-795.2      | 61.29      | 782.1-797.1      | 38.7       | 2.8747           |

Table S4The result parameters calculated by XPS fitting Spectrum of O 1s

|            | Lattice oxygen |             | Adsorbed oxygen |             |  |
|------------|----------------|-------------|-----------------|-------------|--|
| Conditions | B.E/eV         | Proportion% | B.E/eV          | Proportion% |  |
| Untreated  | 528.4          | 35.71       | 530.9           | 64.29       |  |
| N2,400°C   | 528.4          | 33.36       | 530.9           | 66.64       |  |
| N2,600°C   | 528.4          | 33.16       | 530.9           | 66.84       |  |
| N2,800°C   | 528.8          | 33.05       | 531.1           | 66.95       |  |



Fig. S1 SEM images of SSC powders: (a) SSC-400; (b) SSC-600; (c) SSC-800; (d) SSC-air, untreated.



Fig. S2 Surface section SEM images of SSC cathodes prepared at 1050 °C, (a) SSC-400; (b) SSC-600; (c) SSC-800; (d) SSC-air.



Fig. S3 (a) XRD image of the SSC powders which precursor sintered at 600 °C for 2 h in 0%, 5% and 10% H<sub>2</sub>/N<sub>2</sub>. (b) Oxygen non-stoichiometry and TG plots of the SSC annealed under different condition. TG was measured in air. (c) The R<sub>p</sub> values of the cathodes.

Firstly, the precursors were pre-calcined at 600 °C in different concentration of hydrogen (0%, 5%, 10% H<sub>2</sub>/N<sub>2</sub>), and then the powders were recalcined in air for 2 h at 900 °C. Fig. S3a shows the XRD image of the SSC powders. There was no impurity phase formed, which proves that the reduction atmosphere pretreatment (5%, 10% H<sub>2</sub>/N<sub>2</sub>) will not have a significant effect on the crystal structure of the sample. Fig. S3b shows the experimental results of  $\delta$  and thermogravimetry of SSC tested in air atmosphere. The  $\delta$  values are 0.23, 0.26 and 0.27 for 0%, 10% and 5% H<sub>2</sub>/N<sub>2</sub> at 800 °C, respectively. The oxygen vacancies of the samples pretreated with hydrogen (5%, 10% H<sub>2</sub>/N<sub>2</sub>) are slightly higher than those of the samples pretreated with pure nitrogen atmosphere which tested in air atmosphere. The sample in a hydrogen

atmosphere (5%, 10%  $H_2/N_2$ ) treatment increased the oxygen vacancy of the sample. Because hydrogen is a reducing gas, it can also carbonize organic compounds in hydrogen atmosphere during the pre-sintering process. At the same time, hydrogen may reduce the metal ions, thus increasing the oxygen vacancies in the samples. Fig. S3c shows the  $R_p$  of the cathodes. The polarization resistance of 5% and 10%  $H_2/N_2$ pretreated samples is slightly higher than that of nitrogen pretreated samples at 600-650 °C. At 700-750 °C, the polarization resistance of the three samples was almost the same. The results showed that the samples treated with 5% and 10%  $H_2/N_2$  have similar oxygen vacancies and catalytic performance as those treated with pure  $N_2$ .