Supplementary Information for

Synergetic Enhancement of Thermoelectric Performances by

Localized Carrier and Phonon Scattering in Cu2Se with Incorporated

Fullerene Nanoparticles

Yingshi Jin¹, Junphil Hwang¹, Sujin Kim¹, Jungwon Kim², Sung-Jin Kim^{1*}

Affiliations:

¹Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea

2 Institute of Advanced Composite Materials, Korea Institute of Science and Technology(KIST), Jeonbuk 55324, Korea

Approximate interparticle distance of C_{60} nanoparticles by molar %

Molar %	Volumetric	Interparticle distance (nm)	Interparticle distance (nm)
	$\frac{0}{0}$	(Assuming	(Assuming agglomerated C_{60}
		non-agglomerated C_{60})	similar with TEM result)
0.03	0.5	5.5	11.5
0.3	5	2.5	5.3
0.5	8	2.1	4.5
0.7	10	1.9	4.0

Table S1. Molar %, volumetric %, and estimated interparticle distance of embedded C⁶⁰ nanoparticles

The relation between molar % and volumetric % in Table S1 can be expressed as follows,

$$
V_{C_{60}} = \frac{M o l \%_{C_{60}} \times M_{C_{60}}}{\rho_{C_{60}}}, \ V_{Cu_2Se} = \frac{100\% \times M_{Cu_2Se}}{\rho_{Cu_2Se}}
$$

Eq. S1

$$
Vol\% = \frac{V_{C_{60}}}{V_{Cu_2Se}} \times 100
$$

where *V* is the volume[cm³], *M* is the molar mass[g mol⁻¹], and ρ is the density[g cm-³]. To determine the amount of fullerene, we estimate the interparticle distance between fullerenes before the experiment. In our previous report¹, we found that the interparticle distance less than 15 nm was needed to reduce lattice thermal conductivity. To convert molar % to approximate interparticle distance in Table S1, we used the following equations.

Number of
$$
C_{60}
$$
: $N_{C_{60}} = Mol\% \times N_A$
Volume of Cu_2Se : $V_{Cu_2Se} = \frac{100\% \times M_{Cu_2Se}}{\rho_{Cu_2Se}}$ Eq. S2

Page 2 of 5

Then, the number density of C_{60} [count m⁻³], η is,

$$
\eta_{C_{60}} = \frac{N_{C_{60}}}{V_{Cu_2Se}}
$$
 Eq. S3

Assuming the fullerene nanoparticles are dispersed uniformly in a cubic matrix, then the line density of C_{60} [count m⁻¹], *η_line* is,

$$
\eta_line_{C_{60}} = \sqrt[3]{\eta_{C_{60}}} \qquad \qquad \text{Eq. S4}
$$

Finally, the interparticle spacing is the reciprocal of line density.

$$
d_{\text{spacing}} = \frac{1}{\eta_line_{C_{60}}} \qquad \qquad \text{Eq. S5}
$$

Hall measurement data

Table 2. Room temperature Hall measurement results

Thermal conductivity calculation using the Callaway model

The thermal conductivities of the $C_{60}/Cu₂Se$ nanocomposites are calculated using relaxation time approximation (Callaway model). The relaxation time is combined by Matthiessen's rule. (See Eq. (3) in main text) The relaxation time formula for intrinsic scattering process(Alloy, Normal, Umklapp) was discussed in our previous literatures.² For the formula of relaxation time for embedded nanoparticle is obtained from *W. Kim et al*. 3

$$
\frac{1}{\sigma_{NP}} = \frac{1}{\sigma_{Rayleigh}} + \frac{1}{\sigma_{near\ geometrical}}
$$
 Eq. S6

Here, both the scattering cross sections are described as,

$$
\frac{\sigma_{\text{Rayleigh}}}{\pi R^2} = \chi^4 \left[\frac{\alpha^2}{4} \left(\frac{\Delta M}{M} \right)^2 + 3\alpha^8 \left(\frac{\Delta K}{K} \right)^2 \frac{\sin^4 \left(\frac{\alpha |k| \delta}{2} \right)}{\left(\frac{\alpha |k| \delta}{2} \right)^4} \right]
$$
\nEq. S7\n
$$
\times \left\{ \frac{\pi \left[\cos(4\chi) - 1 + (4\chi) \sin(4\chi) + 32\chi^4 - 8\chi^2 \right]}{16\chi^6} \right\}
$$
\nEq. S7\n
$$
\frac{\sigma_{\text{near geometrical}}}{\pi R^2} = 2 \left\{ 1 - \frac{\sin \left[2\chi \left(\frac{k'}{k} - 1 \right) \right]}{\chi \left(\frac{k'}{k} - 1 \right)} + \frac{\sin^2 \left[\chi \left(\frac{k'}{k} - 1 \right) \right]}{\left[\chi \left(\frac{k'}{k} - 1 \right) \right]^2} \right\}
$$
\nEq. S8

where, the *M* is atomic mass, *K* is spring constant, α is trigonometric ratio, δ is interparticle distance, k is wavevector, and χ is size parameter. Using Eq. S6, the relaxation time for phonon scattering by embedded C_{60} is,

$$
\tau_D = \frac{1}{\eta_{C_{60}} \nu \sigma_{NP}} \qquad \qquad \text{Eq. S9}
$$

here, number density of C_{60} is obtained by Eq. S3, ν is phonon group velocity.

Reference

- ¹ Hongchao Wang, Je-Hyeong Bahk, Chanyoung Kang, Junphil Hwang, Kangmin Kim, Jungwon Kim, Peter Burke, John E. Bowers, Arthur C. Gossard, Ali Shakouri, and Woochul Kim, Proceedings of the National Academy of Sciences of the United States of America **111** (30), 10949 (2014).
- 2 J. Hwang, H. Kim, M. K. Han, J. Hong, J. H. Shim, J. Y. Tak, Y. S. Lim, Y. Jin, J. Kim, H. Park, D. K. Lee, J. H. Bahk, S. J. Kim, and W. Kim, Acs Nano **13** (7), 8347 (2019).
- ³ W. Kim and A. Majumdar, Journal of Applied Physics **99** (8), 084306 (2006).