Electronic Supplementary Material (ESI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2021

> Meso-tetra (4-sulfonatophenyl) porphyrin silver / Ag nanoparticles / graphene phase C_3N_4 with a sandwich-like structure and double-faced active centers via two-step photocatalytic room-temperature synthesis for ractopamine detection

Xuehua Weng^{a,b}, Huiling Ye^{a,b}, Wenqiang Xie^{a,b}, Meihui Ying^{a,b}, Haibo Pan^{a,b,c*}, Min Du^c

^a National & Local Joint Biomeidical Engineering Research Center on Phototodynamics Technology, Fuzhou, Fujian 350108, P. R. China

^b College of Chemistry, Qishan Campus, Fuzhou University, Fuzhou, Fujian 350108,, China

^c Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian 350108, China

*Corresponding authors

Telephone: 86-591-22866127; Fax: 86-591-22866127

E-mail: hbpan@fzu.edu.cn (H. Pan)

Fig. S1 SEM images of (A) bulk g- C_3N_4 and (B) ng- C_3N_4 .

Fig. S2 FT-IR spectra of bulk $g-C_3N_4$ and $ng-C_3N_4$ (A: 4000-500cm⁻¹ and B: 2000-600cm⁻¹).

Fig. S3 ¹HNMR spectrum of H₂TPPS₄ in D₂O, insert: molecular diagram of H₂TPPS₄.

Fig. S4 UV-vis spectrum of H_2TPPS_4 in H_2O .

Fig. S5 (A) SEM images and (B) EDS of Ag/ng- C_3N_4 .

Fig. S6 (A) DPV curves of Ag₂TPPS₄/AgNPs/ng-C₃N₄/GCE in pH 7.0 PBS with 1×10⁻⁶ M RAC.

(B) UV-vis spectra for RAC after oxidized cycles in pH 7.0 PBS.

Fig. S7 (A) DPV curves and (B) peak currents of 1×10^{-6} M RAC in PBS with accumulation potentials in the range of 0 to 0.4 V.

Fig. S8 Effect of solution pH on (A) DPV and (B) electrochemical response of RAC $(1 \times 10^{-6} \text{ M})$ on Ag₂TPPS₄/AgNPs/ng-C₃N₄/GCE.

Fig. S9 Elemental mapping of $Ag_2TPPS_4/AgNPs/ng-C_3N_4/GCE$.

Fig. S10 Current response of Ag_TPPS_4/AgNPs/ng-C_3N_4/GCE in 50 μM RAC with 500 μM

interferences.

Table S1 Zeta potentials of Ag₂TPPS₄/AgNPs/ng-C₃N₄, AgNPs/ng-C₃N₄, RAC,

Samples	Zeta potential (mV)	
AgNPs/ng-C ₃ N ₄	-2.13	
Ag ₂ TPPS ₄ /AgNPs/ng-C ₃ N ₄	-42.2	
RAC	1.26	
AgNPs/ng-C ₃ N ₄ +RAC	7.69	
Ag ₂ TPPS ₄ /AgNPs/ng-C ₃ N ₄ +RAC	-15.6	

AgNPs/ng-C₃N₄+RAC and Ag₂TPPS₄/AgNPs/ng-C₃N₄+RAC in H₂O.

Table S2 Comparison of analytical parameters for RAC oxidation at

Methods	Linear range (mol/L)	Limit of detection (mol/L)	Ref.
Bi ₂ Te ₃ @g-C ₃ N ₄ BNs	$1.5 \times 10^{-8} - 4.56 \times 10^{-4}$	1.77 × 10 ^{.9}	[1]
Fe ₃ O ₄ -RGO	$1.0\times10^{\text{-5}}$ - $1.0\times10^{\text{-4}}$	1.3 × 10 ⁻⁸	[2]
NPVMo/ZrO ₂	$3.0\times10^{\text{-6}}$ - $5\times10^{\text{-5}}$	9.3 × 10 ⁻⁷	[3]
quartz crystal microbalance	2.5 × 10 ⁻⁶ - 1.5× 10 ⁻⁴	1.17×10^{-6}	[4]
OMC	$8.5 imes 10^{-8}$ - $8 imes 10^{-6}$	$6 imes 10^{-8}$	[5]
Ag ₂ TPPS ₄ /AgNPs/ng-C ₃ N ₄	1×10 ⁻⁷ - 1.2×10 ⁻⁵	5.1 × 10 ⁻⁸	This work

$Ag_{2}TPPS_{4}/AgNPs/ng-C_{3}N_{4}$ electrode with reported works.

Samples	Added (nM)	Found (nM)	Recover (%)
		4952	99%
1	5000	4762	95%
		4619	92%
2		1043	104%
	1000	1062	106%
		990	99%
3 100		114	114%
	100	110	110%
		105	105%

 Table S3 Amount and recovery rate of RAC in milk samples.

References

1 U. Rajaji, T. W. Chen, S. Chinnapaiyan, S.-M. Chen, M. Govindasamy, *Anal. Chim. Acta.*, 2020, **1125**, 220-230.

2 Y. Poo-arporn, S. Pakapongpan, N. Chanlek, R.P. Poo-arporn, *Sens. Actuators B Chem.*, 2019, **284**, 164-171.

3 L. Zhang, Q. Wang, Y. Qi, L. Li, S. Wang, X. Wang, Sens. Actuators B Chem., 2019, 288, 347-355.

4 L. J. Kong, M. F. Pan, G. Z. Fang, X. l. He, Y.-k. Yang, J. Dai, S. Wang, *Biosens. Bioelectron.*, 2014, **51**, 286-292.

5 X. Yang, B. Feng, P. Yang, Y. Ding, Y. Chen, J. Fei, *Food Chem.*, 2014, **145**, 619-624.