Electronic Supplementary Material (ESI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2021

Supplemental Material for "MoS₂ and Janus (MoSSe) Based 2D van der Waals Heterostructures: Emerging Direct Z-scheme Photocatalysts"

Arunima Singh^{*}, Manjari Jain, Saswata Bhattacharya^{*} Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India

I. ELECTROSTATIC POTENTIAL

Fig.S 1: Schematic of electrostatic potential as obtained corresponding to MoS_2/WS_2 vdW HTS.

 $^{^{\}ast}$ Arunima. Singh@physics.
iitd.ac.in [AS], saswata@physics.iitd.ac.in [SB]

Averaged Electrostatic Potential

Fig.S 2: Averaged electrostatic potential corresponding to TMDs viz. TiS_2 (upper panel), HfS_2 (middle panel) and ZrS_2 (lower panel) for I, II and III configurations.

Fig.S 3: Averaged electrostatic potential corresponding to TMOs viz. HfO₂ (upper panel), T-SnO₂ (middle panel) and T-PtO₂ (lower panel) for I, II and III configurations.

Fig.S 4: Electrostatic potential of $T-PtO_2$ for I, II and III configurations, showing dipole direction at the interface.

Fig.S 5: Electrostatic potential corresponding to ZrS_2 (upper panel) and HfS_2 (lower panel) for I, II and III configurations.

Fig.S 6: Electrostatic potential corresponding to TiS_2 (upper panel), HfO_2 (middle panel) and SnO_2 (lower panel) for I, II and III configurations.

II. LATTICE PARAMETERS

BX_2	MoS_2	WS_2	ZrS_2	HfS_2	$\mathrm{Ti}\mathrm{S}_2$	HfO_{2}	$T-PtO_2$	$T-SnO_2$
1	6.321	6.321	7.120	7.019	6.660	6.243	6.296	6.450

III. BAND GAPS OF CONFIGURATIONS

TABLE II: Band gaps of the monolayers and their corresponding vdW HTSs.

PV.	Band Gap (eV) (Indirect/Direct)						
	Monolayer	Ι	II	III			
MoS_2	-/2.257	-	-	-			
MoSSe	-/2.172	-	-	-			
WS_2	-/2.447	1.636/2.038	1.879/1.885	1.589/1.928			
ZrS_2	1.829/1.892	0.752/0.809	0.123/0.177	0.676/0.729			
HfS_2	1.937/2.019	0.746/0.863	0.079/0.185	0.663/0.773			
TiS_2	1.672/1.769	0.414/0.418	0.047/0.056	0.520/0.525			
HfO_2	3.516/3.520	0.486/0.499	0.072/0.090	0.440/0.453			
T-PtO ₂	3.304/3.313	1.323/1.525	0.595/0.846	1.178/1.423			
$T-SnO_2$	4.143/4.297	1.130/1.285	0.460/0.882	1.069/1.473			

Fig.S 7: (Color online) Bandstructures corresponding to the supercell of MoS₂/BX₂ HTSs (configuration I) where MoS₂/ZrS₂ has similar bandstructure as that of MoS₂/HfS₂. The bandstructures corresponding to the MoSSe based vdW HTSs (configurations II and III) are similar with slight change in energetics. The red and green points correspond to the conduction band minimum and valence band maximum.

Fig.S 8: (Color online) Planar averaged charge density

Fig.S 9: Absorption spectra of Janus (MoSSe) and monolayer TMDs i.e MoS₂, WS₂, TiS₂, HfS₂ and ZrS₂

VII. EXCITON BINDING ENERGY

We have performed mBSE calculations, with an intention to simply compare the exciton binding energy (E_B) of vdW HTSs with MoS₂ and MoSSe. We have included four valence and conduction bands for mBSE on top of hybrid functional. However, there is a huge scope in understanding the excitonic transitions in these systems with different computational approaches. Presently, considering the Z-scheme application, the smaller E_B of vdW HTSs as compared to MoS₂ (or MoSSe) would allow more $e^- - h^+$ recombination in vdW HTS thereby facilitating MoS₂ (or MoSSe) for HER.

TABLE III: Exciton binding energies of vdW HTSs, MoS₂ and MoSSe monolayers

	MoS_2	MoSSe	$MoSSe/HfS_2$	$MoSSe/TiS_2$	MoS_2/SnO_2	$MoSSe/ZrS_2$	$MoSSe/ZrS_2$	$MoSSe/SnO_2$
$E_B (eV)$	1.5	1.8	0.44	0.37	1.3	0.42	0.41	1.3

VIII. CARRIER MOBILITY

$$\mu = \frac{2e\hbar^3 C}{3k_B T |m^*|^2 E_1^2} \tag{1}$$

In this expression C is defined as $C = [\partial^2 E / \partial \delta^2] / S^0$. E refers to the total energy of the system, δ is the applied uniaxial strain, and S^0 is the area of the optimized vdW HTS. m^{*} is the effective mass, expressed as m^{*} = $\hbar^2 (\partial E^2 / \partial k^2)^{-1}$. T represents temperature, and E_1 is the deformation potential constant that is defined as $\Delta E = E_1(\Delta l/l_0)$. Here, ΔE is the energy shift of the band edge position with respect to the lattice strain $\Delta l/l_0$. The energies of the band edges (CBm or VBM) are obtained with vacuum level as the reference.