Electronic Supplementary Information

Highly Luminescent and Stable Quasi-2D Perovskite Quantum Dots by Introducing Large

Organic Cations

Jingxi Wang, Xiaorui Liu, Lei Zhou, Wei Shen, Ming Li, Rongxing He*

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University),

Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University,

Chongqing 400715, PR China.

*Corresponding author

E-mail addresses: herx@swu.edu.cn (R. X. He).

Figure S1 Optimization of the volume of CQDs-doping. (A) PLQY characterizations and (B) Air and water stability of CQDs- $(BA)_2(MA)_{x-1}Pb_xBr_{3x+1}$ with different CQDs-doping volumes (a~g: 0.1, 0.25, 0.5, 0.75, 1, 1.25 and 1.5 mL).

As shown in Figure S1(A), when the volume of CQDs ranges from 0.1 to 1 mL, the photoluminescence quantum yield (PLQY) of CQDs- $(BA)_2(MA)_{x-1}Pb_xBr_{3x+1}$ has not changed significantly. Then increases the volume of CQDs continuously, the PLQY of perovskite decreases slightly. Therefore, we consider that the volume of CQDs should not exceed 1 mL. Simultaneously, in order to further determine the optimal volume of CQDs, we have characterized the environmental stability of perovskite with different CQDs volumes. As shown in Figure S1(B), the perovskite which doped 1 mL CQDs (column e) shows the best air and water stability. Therefore, the optimal volume of CQDs is 1 mL at last.

Materials	τ_1/ns	<i>f</i> ₁ /%	τ_2/ns	<i>f</i> ₂ /%	$ au_{ave}/ns$
MAPbBr ₃	6.60	82	44.77	18	13.46
MA:BA = 1:0.5	9.91	81	50.98	19	17.86
MA:BA = 1:1	13.22	85	69.11	15	21.62
MA:BA = 1:2	14.92	87	91.27	13	24.58
MA:BA = 1:4	1.97	93	22.39	7	3.40
BA ₂ PbBr ₄	2.43	87	8.71	13	3.22

Table S1 The detailed FL lifetimes of the perovskites.

The τ_1 and τ_2 relate to the decay time constants of a fast and slow component respectively, while *f* corresponds to the proportion of each component, the average lifetime of τ_{ave} is given by the formula:

$$\tau_{ave} = f_1 \tau_1 + f_2 \tau_2$$

The fast τ_1 is mainly due to a non-radiative recombination causes by defects, whereas the slow τ_2 can be attributed to the radiative recombination.

Figure S2 Stability of MAPbBr₃ in (A) air and (B) water. The illustration is the enlarged FL characterization of MAPbBr₃ in water for 6 h.

Figure S3 Stability of quasi-2D perovskites in water. (A) XRD and (B) FL spectra of $(BA)_2(MA)_{x-1}Pb_xBr_{3x+1}(1:1)$, (C) XRD and (D) FL spectra of CQDs- $(BA)_2(MA)_{x-1}Pb_xBr_{3x+1}(1:1)$ stores in water for 7 days.

Quasi-2D Material	PLQY	Stability	Application	Ref.
$BA_2DMA_{1.6}Cs_2Pb_3Br_{11.6}$	52.8%	au11	PeLED	[1]
$PEA_2DMA_{1,2}Cs_2Pb_3Br_{11,2}$	63.2%	nun		[1]
PEA inserted CsPbBr ₃	10.0% (EQE)	null	PeLED	[2]
Delumer conned DEA MADhDr	65%	50 d in air and water	color-conversion	[3]
Polymer capped PEA-MAPODI ₃			films	
BA doped FAPbBr ₃	16%	null	PeLED	[4]
	39.3%	more than 30 d in air	EL concer	This
$CQDS-(DA)_2(MA)_{x-1}P0_xBf_{3x+1}$		and 3 d in water	гL assay	work

Table S2 A summary of different quasi-2D PQDs.

References:

[1] Zeng, S. Y.; Shi, S. S.; Wang, S. R.; Xiao, Y. Mixed-ligand engineering of quasi-2D perovskites for efficient sky-blue light-emitting diodes. *J. Mater. Chem. C* **2020**, *8*, 1319.

[2] Guan, Z. Q.; Shen, D.; Li, M. L.; Ma, C. Q.; Chen, W. C.; Cui, X.; Liu, B.; Lo, M. F.; Tsang, S. W.; Lee, C. S.; Zhang, W. J. Effects of Hydrogen Bonds between Polymeric Hole-Transporting Material and Organic Cation Spacer on Morphology of Quasi-Two Dimensional Perovskite Grains and Their Performance in Light Emitting Diodes. *ACS Appl. Mater. Interfaces* 2020, *12*, 9440-9447.

[3] Jia, S. Q.; Li, G. Y.; Liu, P.; Cai, R.; Tang, H. D.; Xu, B.; Wang, Z. J.; Wu, Z. H.; Wang, K.;
Sun, X. W. Highly Luminescent and Stable Green Quasi-2D Perovskite-Embedded Polymer
Sheets by Inkjet Printing. *Adv. Funct. Mater.* 2020, *30*, 1910817.

[4] Alehdaghi, H.; Kanwat, A.; Zirak, M.; Moyen, E.; Choi, W. C.; Jang, J. Quasi-2D organic cation-doped formamidinium lead bromide (FAPbBr₃) perovskite light-emitting diodes by long alkyl chain. *Org. Electron.* **2020**, *79*, 105626.

Figure S4 PLQY characterizations of (a) $(BA)_2(MA)_{x-1}Pb_xBr_{3x+1}(1:1)$ and (b) CQDs- $(BA)_2(MA)_{x-1}Pb_xBr_{3x+1}(1:1)$

 $_1Pb_xBr_{3x+1}(1:1)$ in air for 50 days.

Under the optimized conditions in Figure S5, the detecting process of H_2O_2 is described as follows. Firstly, 213 µL of the prepared CQDs-(BA)₂(MA)_x. $_1Pb_xBr_{3x+1}(1:1)$ is dispersed in 2 mL of toluene to form a long-term stable colloidal solution, the concentration of Br⁻ in this solution is about 4 mM. Then, 10 µL of H_2O_2 with different concentrations were added in 100 µL ethyl acetate with 80 mM I⁻, respectively. After 5 min redox reaction, the above mixture is added into 2 mL CQDs-(BA)₂(MA)_{x-1}Pb_xBr_{3x+1}(1:1) solution. Here, the concentration of H_2O_2 in redox reaction determines the amount of residual I⁻, and the remaining I⁻ changes the emission wavelength of CQDs-(BA)₂(MA)_{x-1}Pb_xBr_{3x+1}(1:1) via halide exchange. In combination with the above processes, the semi-quantitative colorimetric detection of H_2O_2 can be realized by monitoring the change of perovskite fluorescence wavelength.

Figure S5 (A) Optimization of the volume of I⁻ (80 mM) in 2 mL CQDs- $(BA)_2(MA)_{x-1}Pb_xBr_{3x+1}(1:1)$ solution; (B) Optimization of reaction time between I⁻ (100 µL, 80 mM) and H₂O₂ (10 µL, 1 mM) in 2 mL CQDs-(BA)₂(MA)_{x-1}Pb_xBr_{3x+1}(1:1) solution.