Supporting information

Tailoring the Defects of Sub-100 nm Multipodal Titanium Nitride/Oxynitride Nanotubes for

Efficient Water Splitting Performance⁺

Kamel Eida* ⁺, Mostafa H. Sliem^{b +}, and Aboubakr M. Abdullah^{b*}

- ^a Gas Processing Center, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar
- ^b Center for advanced materials, Qatar University, Doha P.O. Box 2713, Qatar.
- ⁺Contributed equally to this work

*Corresponding authors: kamel.eid@qu.edu.qa; bakr@qu.edu.qa

Figure S1. (a) XPS surveys of the as-synthesized materials and their high-resolution XPS spectra of (b) Ti 2p, (c) O 1s, (d) N1s of TiO_2NTs and $TiON_xNTs$ after etching.

Table S1. The binding energies of Ti, O, and N as well as the N-content in the as-synthesized materials. The unit for all the values in the table are in (eV)

Samples		Before etching				After etching			
		TiO ₂ NTs	TiON ₂ NTs	TiON ₄ NTs	TiON ₆ NTs	TiO ₂ NTs	TiON ₂ NTs	TiON ₄ NTs	TiON ₆ NTs
Ti	Ti						454.4	454.4	454.4
	Ti						460.0	460.0	460.0
	TiN		455.5	455.6	455.8		455.7	455.7	455.7
	TiN		461.3	461.4	461.5		461.0	461.2	461.3
	Ti-O-N		457.2	457.0	456.9		457.2	457.3	457.4
	Ti-O-N		462.7	462.6	462.5		462.5	462.5	462.7
	Ti-O	458.7	458.4	458.4	458.4	458.7	458.7	458.7	458.8
	Ti-O	464.4	464.3	464.3	464.3	464.3	464.4	464.4	464.5
0	Ti-O	530.2	530.5	530.6	530.9	530.2	530.0	530.0	530.1
	O-H	532.1							
	O-N		531.5	531.6	531.7		530.9	531.2	531.3
	O _{ads}	532.5	532.7	532.7	532.8	532.5	532.4	533.0	533.0
N	Ti-O-N		396.0	395.7			396.3	396.3	396.1
	TiN		397.4	397.8	397.8		398.0	397.6	397.5
	Ti-N-O		399.0	399.8	399.1		399.9	399.3	399.1
	NO		401.5	401.3	400.5		402.1	402.4	401.9
	NOx		402.4	402.7	402.9		403.9		
	NOx		404.7	404.8	405.1				

Figure S2 Tauc plot of ammonia annealed TiON₆NTs, TiON₄NTs, and TiON₂NTs relative to air annealed TiO₂NTs.

Figure S2 LSV of water oxidation on different photocatalysts with different lengths and shapes in an aqueous solution of 0.1 M KOH at a scan rate of 10 mV s⁻¹ at room temperature under light illumination.

TiON₆NTs is multipodal (80 nm length), TiONNTs-1.2 is ammonia annealed TiO₂NTs (1.2 μ m length), TiONNTs-500 is ammonia annealed TiO₂NTs (500 nm length), TiO₂NTs-1.2 is nitrogen-free (1.2 μ m length), and TiO₂ is commercial TiO₂ nanoparticles (spherical 5-8 nm). TiON₆NTs, TiONNTs-1.2, TiONNTs-500, and TiO₂NTs-1.2, were used as working electrode, while TiO₂ nanoparticles were deposited on indium tin oxide substrate with the same area as other NTs foils.

TiONNTs-1.2 and TiO₂NTs-1.2 were prepared using our previous reported method¹. Meanwhile, the same method was used to fabricate TiONNTs-500 but with decreasing the anodic oxidation time to 80 min. TiONNTs-1.2 and TiONNTs-500 were annealed under ammonia for 6 h.

		TiO ₂ NTs	TiON ₂ NTs	TiON₄NTs	TiON ₆ NTs
	$\begin{array}{c} R_1 \\ (\Omega. \mathrm{cm}^2) \end{array}$	192.3	167.1	128.1	112.4
	CPE ₁ Y _{o1} x 10 ⁻⁶ (s ⁿ ohm ⁻¹ cm ⁻²)	1036	1345	2093	2467
Light	n ₁	0.874	0.743	0.719	0.667
	R_2 (Ω .cm ²)	2115	2012	1423	1264
	CPE ₂ Y _{o2} x 10 ⁻⁶ (s ⁿ ohm ⁻¹ cm ⁻²)	93.51	99.13	157.2	213.7
	n ₂	0.613	0.597	0.572	0.556

Table S2 The donner densities band potential obtained from Mott-Schottky plots

Table S3 The donner densities band potential obtained from Mott-Schottky plots

	<i>N</i> _d / cm ⁻³	E_{FB} / V vs. RHE
TiO ₂ NTs	1.68E+19	0.89
TiON ₂ NTs	8.24E+18	1.16
TiON ₄ NTs	4.15E+18	-1.57
TiON ₆ NTs	3.54E+18	-1.94

References

1. K. Eid, K. A. Soliman, D. Abdulmalik, D. Mitoraj, M. H. Sleim, M. O. Liedke, H. A. El-Sayed, A. S. AlJaber, I. Y. Al-Qaradawi and O. M. Reyes, *Catal. Sci. Technol.*, 2020, **10**, 801-809.