Supplementary Information

Pt₃Sn Nanoparticles Enriched with SnO₂/Pt₃Sn Interface for Highly Efficient Alcohol Electrooxidation

Zichen Wang,^a Liang Wang,^a Wangbin Zhu,^a Tang Zeng,^a Wei Wu,^a Zhao Lei,^a Yangyang Tan,^a Haifeng Lv,^{*b,c} and Niancai Cheng,^{*a}

- ^a College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
- ^{b.} PEM Fuel Cell Catalyst Research And Development Center, Shenzhen, 518057, Guangdong, China.
- ^{C.} Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, United States

*Corresponding author.

E-mail address: niancaicheng@fzu.edu.cn (Niancai Cheng),

lvhaifenganl@gmail.com (H. Lv),

Electrochemical Measurements

The electrochemical measurements were tested on an Autolab electrochemistry station with a standard three-electrode cell. Platinum wire, a glassy carbon electrode coated with catalyst and Ag/AgCl (sat. KCl) were used as a counter electrode, working electrode and reference electrode, respectively. The potentials in this study were converted to reversible hydrogen electrode (RHE). The working electrodes were modified by deposition of 5 uL uniform catalyst ink on a glassy carbon electrode. The uniform catalyst ink synthesized through ultrasonicated mixing 4 mg of catalyst in 1 mL deionized water 20 μ L Nafion (5 wt.%) and 1 mL isopropyl alcohol and. Cyclic voltammetry (CV) measurements were carried out in 0.5 M H₂SO₄ at a scan rate of 50 mV s⁻¹. The ethanol oxidation reaction or methanol oxidation reaction was performed in 0.5 M H₂SO₄ + 1 M ethanol or 0.5 M H₂SO₄ + 1 M methanol at a scan of 50 mV s⁻¹. The CO stripping voltammetry was performed in 0.5 M CO-free H₂SO₄ electrolyte at a scan of 50 mV s⁻¹ after the electrode was held at 0.05 V vs. RHE in 0.5 M H₂SO₄ solution bubbled with CO for 30 min.

Fig. S1 (a) TEM and (b) HRTEM of Pt_2Sn/NG catalyst.

Fig. S2 (a) TEM and (b) HRTEM of Pt_2Sn-H/NG catalyst.

Fig. S3 The selected diffraction pattern of $Pt_3Sn@u-SnO_2/NG$ catalyst.

Fig. S4 (a) CV curves of different catalysts in 0.5 M H_2SO_4 solution with a sweep rate of 50 mV s-1. (b) Linear sweep voltammograms of different catalysts in 0.5 M H_2SO_4 + 1 M CH₃CH₂OH solution with a sweep rate of 50 mV s⁻¹.

Fig. S5 The mass activity towards EOR on Pt_2Sn/NG , Pt_2Sn-H/NG , $Pt_3Sn@u-SnO_2/NG$ and Pt/C catalysts at different potential.

Fig. S6 Cyclic voltammogram of (a) $Pt_3Sn@u-SnO_2/NG$, (b) Pt_2Sn-H/NG , (c) Pt_2Sn/NG and (d) Pt/C catalysts in N_2 -saturated 0.5 M H_2SO_4 + 1 M CH_3CH_2OH solution at scan rate of 50 mV s⁻¹ during the durability tests.

Fig. S7 (a) TEM and (b) HRTEM of $Pt_3Sn@u-SnO_2/NG$ catalyst after the durability tests for 1000 cycles in N₂-saturated 0.5 M $H_2SO_4 + 1$ M CH_3CH_2OH solution.

Fig. S8 The mass activity towards MOR on Pt_2Sn/NG , Pt_2Sn-H/NG , $Pt_3Sn@u-SnO_2/NG$ and Pt/C catalysts at different potential.

Fig. S9 Corresponding Tafel plots for MOR on Pt_2Sn/NG , Pt_2Sn-H/NG , $Pt_3Sn@u-SnO_2/NG$ and Pt/C catalysts.

Fig. S10 Cyclic voltammogram of (a) $Pt_3Sn@u-SnO_2/NG$, (b) Pt_2Sn-H/NG , (c) Pt_2Sn/NG and (d) Pt/C catalysts in N_2 -saturated 0.5 M $H_2SO_4 + 1$ M CH₃OH solution at scan rate of 50 mV s⁻¹ during the durability tests.

Fig. S11 Cyclic voltammogram of (a) $Pt_3Sn@u-SnO_2/NG$, (b) Pt_2Sn-H/NG , (c) Pt_2Sn/NG catalysts in N₂-saturated 0.5 M H₂SO₄ solution at scan rate of 50 mV s⁻¹ during the durability tests.

	(111)	(200)
Standard Pt ₃ Sn	100	39
Standard Pt	100	53
Pt ₃ Sn	100	40.6

 Table S1. The peak height ratio of crystal plane.

Table S2. XPS spectra of different catalysts with Pt 4f.

Samples	$Pt^{0}4f_{7/2}$	$Pt^{2+}4f_{7/2}$	$Pt^{0}4f_{5/2}$	$Pt^{2+}4f_{5/2}$
Pt ₂ Sn/NG	71.49	72.69	74.77	76.08
Pt ₂ Sn-H/NG	71.23	72.42	74.59	75.77
Pt ₃ Sn@u-SnO ₂ /NG	71.32	72.50	74.61	75.90
Pt/C	71.76	72.96	75.10	76.27

Samples	${\rm Sn}^{4+}{\rm 3d}_{5/2}$	$Sn^03d_{5/2}$	$Sn^{4+}3d_{3/2}$	$Sn^03d_{3/2}$
Pt ₂ Sn/NG	486.98	485.51	495.41	494.04
Pt ₂ Sn-H/NG	486.88	485.53	495.34	494.01
Pt ₃ Sn@u-SnO ₂ /NG	486.93	485.51	495.34	494.06

Table S3. XPS spectra of different catalysts with Sn 3d.

Table S4. The valent state mass percent of Sn^0 and Sn^{4+} for different samples.

Samples	Sn ⁰	Sn ⁴⁺
Pt ₂ Sn/NG	2.1	97.9
Pt ₂ Sn-H/NG	8.5	91.5
Pt ₃ Sn@u-SnO ₂ /NG	2.4	97.6

Catalysts	Onset Potential (V vs. RHE) from CO	Peak currents MA (mA mg ⁻ ¹ Pt)	Electrolytes	Ref.
Pt ₃ Sn@u-SnO ₂ /NG	0.36	1322	0.5 M H ₂ SO ₄ + 1 M CH ₃ CH ₂ OH	This work
PtSn	/	764.1	0.5 M H ₂ SO ₄ + 1 M CH ₃ CH ₂ OH	[1]
L1 ₀ -Co ₄₁ Pt ₄ Au ₁₅	/	1550	0.1 M HClO ₄ + 2 M CH ₃ CH ₂ OH	[2]
PtRu@FeP	~0.5	660	0.5 M H ₂ SO ₄ + 1 M CH ₃ CH ₂ OH	[3]
Pt49Ru51/C	/	~630	0.1 M HClO ₄ + 0.5 M CH ₃ CH ₂ OH	[4]
Pt ₃ Co@Pt/PC	/	~830	$0.1 \text{ M H}_2\text{SO}_4 + 0.1 \text{ M CH}_3\text{CH}_2\text{OH}$	[5]
Pt-Ni NFs/C	/	1040	$0.1 \text{ M HClO}_4 + 0.2 \text{ M CH}_3\text{CH}_2\text{OH}$	[6]
PtRu/C	0.75	771	1 M HClO ₄ + 1 M CH ₃ CH ₂ OH	[7]
Pt-Ce _{0.6} Zr _{0.4} /C	0.42	272	1 M HClO ₄ + 1 M CH ₃ CH ₂ OH	[7]
Pt ₆ Sn ₃ NWs	/	1080	0.1 M HClO ₄ + 0.5 M CH ₃ CH ₂ OH	[8]
$Pt/C + TiO_2$	~0.67	648	1 M HClO ₄ + 1 M CH ₃ CH ₂ OH	[9]
Pt/SnO ₂ /graphene	/	713	$0.5 \text{ M H}_2\text{SO}_4 + 0.5 \text{ M CH}_3\text{CH}_2\text{OH}$	[10]
SnO ₂ /Pt/G ₃₀	/	454	$0.5 \text{ M H}_2\text{SO}_4 + 0.25 \text{ M CH}_3\text{CH}_2\text{OH}$	[11]
PZCNT (1:1)	0.52	660	1 M HClO ₄ + 1 M CH ₃ CH ₂ OH	[12]
Pt-CoSn/C	/	~454	$0.5 \text{ M H}_2\text{SO}_4 + 0.5 \text{ M CH}_3\text{CH}_2\text{OH}$	[13]

Table S5. EOR Electrochemical activity of the catalysts reported in the literaturecurrently and compared with our $Pt_3Sn@u-SnO_2/NG$ catalyst.

Catalysts	Onset Potential (V vs. RHE) from CO	Peak currents MA (mA mg ⁻¹ Pt)	Electrolytes	Ref.
Pt ₃ Sn@u-SnO ₂ /NG	0.36	1377	0.5 M H ₂ SO ₄ + 1 M CH ₃ OH	This work
Pt ₃ CoRu/C@NC	0.35	970	0.1 M HClO ₄ + 0.5 M CH ₃ OH	[14]
PtRu@FeP	~0.5	700	0.5 M H ₂ SO ₄ + 1 M CH ₃ OH	[3]
PZCNT (1:1)	0.52	847	1 M HClO ₄ + 1 M CH ₃ OH	[12]
Pt/H-TiO2@N- HPCN-800	0.465	695	0.5 M H ₂ SO ₄ + 1 M CH ₃ OH	[15]
Pt ₃₂ Cu ₆₈ alloy	0.48	707	0.5 M H ₂ SO ₄ + 0.5 M CH ₃ OH	[16]
Pt _{3.5} Pb NNWs	/	1180	0.5 M H ₂ SO ₄ + 1 M CH ₃ OH	[17]
Pt-Fe-Mn UCNC	0.43	950	0.5 M H ₂ SO ₄ + 2 M CH ₃ OH	[18]
Pd@PtNi NPs	~0.65	782	$0.5 \text{ M H}_2\text{SO}_4 + 0.5 \text{ M CH}_3\text{OH}$	[19]
PtFe@PtRuFe	0.39	690	0.1 M HClO ₄ + 0.5 M CH ₃ OH	[20]
Pt/Pd NSLs-WPAS	/	952	$0.5 \text{ M H}_2\text{SO}_4 + 0.5 \text{ M CH}_3\text{OH}$	[21]
PtRuCu/C	~0.6	1350	0.1 M HClO ₄ + 1 M CH ₃ OH	[22]
Pt94Zn6 NWs	~0.65	511.3	0.1 M HClO ₄ + 0.2 M CH ₃ OH	[23]
PtRu NWs	/	820	0.1 M HClO ₄ + 0.5 M CH ₃ OH	[24]
Pt-CoSn/C	/	970	0.1 M HClO ₄ + 0.5 M CH ₃ OH	[25]

Table S6. MOR Electrochemical activity of the catalysts reported in the literaturecurrently and compared with our $Pt_3Sn@u-SnO_2/NG$ catalyst.

References:

- Wu, F.; Zhang, D.; Peng, M.; Yu, Z.; Wang, X.; Guo, G.; Sun, Y., Angewandte Chemie 2016, 55, 4952-6.
- [2] Li, J.; Jilani, S. Z.; Lin, H.; Liu, X.; Wei, K.; Jia, Y.; Zhang, P.; Chi, M.; Tong, Y. J.; Xi, Z.; Sun, S., Angewandte Chemie 2019, 58, 11527-11533.
- [3] Bao, Y.; Wang, F.; Gu, X.; Feng, L., *Nanoscale* **2019**, *11*, 18866-18873.
- [4] Zhao, Y.; Maswadeh, Y.; Shan, S.; Cronk, H.; Skeete, Z.; Prasai, B.; Luo, J.; Petkov, V.; Zhong, C.-J., *The Journal of Physical Chemistry C* 2017, 121, 17077-17087.
- [5] Zhang, B.-W.; Sheng, T.; Wang, Y.-X.; Qu, X.-M.; Zhang, J.-M.; Zhang, Z.-C.; Liao, H.-G.; Zhu, F.-C.; Dou, S.-X.; Jiang, Y.-X.; Sun, S.-G., ACS Catalysis 2016, 7, 892-895.
- [6] Ding, J.; Bu, L.; Guo, S.; Zhao, Z.; Zhu, E.; Huang, Y.; Huang, X., Nano Lett 2016, 16, 2762-7.
- [7] Bai, Y.; Wu, J.; Qiu, X.; Xi, J.; Wang, J.; Li, J.; Zhu, W.; Chen, L., *Applied Catalysis B: Environmental* 2007, 73, 144-149.
- [8] Song, P.; Cui, X.; Shao, Q.; Feng, Y.; Zhu, X.; Huang, X., Journal of Materials Chemistry A 2017, 5, 24626-24630.
- [9] Yu, L.; Xi, J., *Electrochimica Acta* **2012**, *67*, 166-171.
- [10] Qu, Y.; Gao, Y.; Wang, L.; Rao, J.; Yin, G., Chemistry 2016, 22, 193-8.
- [11] Qu, Y.; Li, C.; Wang, L.; Gao, Y.; Rao, J.; Yin, G., International Journal of Hydrogen Energy 2016, 41, 14036-14046.
- [12] Song, H.; Qiu, X.; Li, F., Applied Catalysis A: General 2009, 364, 1-7.
- [13] Wang, H.; Zhang, X.; Wang, R.; Ji, S.; Wang, W.; Wang, Q.; Lei, Z., J. Power Sources 2011, 196, 8000-8003.
- [14] Wang, Q.; Chen, S.; Lan, H.; Li, P.; Ping, X.; Ibraheem, S.; Long, D.; Duan, Y.; Wei, Z., Journal of Materials Chemistry A 2019, 7, 18143-18149.
- [15] Zhang, J.; Liu, X.; Xing, A.; Liu, J., ACS Applied Energy Materials 2018, 1, 2758-2768.
- [16] Liao, Y.; Yu, G.; Zhang, Y.; Guo, T.; Chang, F.; Zhong, C.-J., *The Journal of Physical Chemistry C* 2016, 120, 10476-10484.
- [17] Huang, L.; Han, Y.; Zhang, X.; Fang, Y.; Dong, S., Nanoscale 2017, 9, 201-207.
- [18] Qin, C.; Fan, A.; Zhang, X.; Dai, X.; Sun, H.; Ren, D.; Dong, Z.; Wang, Y.; Luan, C.; Ye, J. Y.; Sun, S. G., Nanoscale 2019, 11, 9061-9075.
- [19] Yu, J.; Li, Q.; Li, Y.; Xu, C.-Y.; Zhen, L.; Dravid, V. P.; Wu, J., Adv. Funct. Mater. 2016, 26, 7644-7651.
- [20] Wang, Q.; Chen, S.; Li, P.; Ibraheem, S.; Li, J.; Deng, J.; Wei, Z., Applied Catalysis B: Environmental 2019, 252, 120-127.
- [21] Xu, G.; Si, R.; Liu, J.; Zhang, L.; Gong, X.; Gao, R.; Liu, B.; Zhang, J., Journal of Materials Chemistry A 2018, 6, 12759-12767.
- [22] Xue, S.; Deng, W.; Yang, F.; Yang, J.; Amiinu, I. S.; He, D.; Tang, H.; Mu, S., ACS Catalysis 2018, 8, 7578-7584.
- [23] Xu, Y.; Cui, X.; Wei, S.; Zhang, Q.; Gu, L.; Meng, F.; Fan, J.; Zheng, W., Nano Research 2019, 12, 1173-1179.
- [24] Huang, L.; Zhang, X.; Wang, Q.; Han, Y.; Fang, Y.; Dong, S., Journal of the American Chemical Society 2018, 140, 1142-1147.
- [25] Huang, L.; Zhang, X. P.; Hang, Y. J.; Wang, Q. Q.; Fang, Y. X.; Dong, S. J., Chemistry Of Materials 2017, 29, 4557-4562.