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I. CORE LEVEL PHOTOEMISSION

The core level spectra reported in the main article have been quantitatively analyzed to determine the relative
Cl/Cr atomic ratio and the elemental surface concentration by considering the values of 0.770 and 0.711 of the atomic
sensitivity factors as reported in Ref. [1]. The Cr atomic sensitivity factor has been recalculated by assuming the
presence of Cr in two phases, namely CrCl3 and Cr2O3. Under this assumption, the Cr 2p3/2 atomic sensitivity factor
(ASFCr) can be estimated from the experimentally measured spectral area (ACr) of the Cr 2p core level with the
following:

ASFCr = 3ACr

2AO/0.711 + ACl/0.770 ,

where AO and ACl are the experimental areas of O 1s and Cl 2p, respectively.

FIG. 1. Comparison with literature of normalized Cr 2p3/2 spectrum of this work (acquired after 1 hour 100 °C UHV annealing
(black)). Powder phase CrCl3 reference spectrum is digitized form Ref. [2] (red). Cr2O3 reference spectra are digitized from
Ref. [3] (blue) and Ref. [4] (blue).
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II. STRUCTURAL PARAMETERS

TABLE I. Optimized structural parameters for pure and oxidized CrCl3 monolayers and Cl defective CrCl3 supercells. Cr1 is a
Cr atom with an unperturbed (non defective) first neighboring shell of 6 Cl atoms (labeled as Cl1), while Cr2 atoms are those
Cr ones in the structure which are first neighbors of a Cl vacant site (labeled as Cl2).

Pure Oxidized (3×3) (2×2) (2×1)
a (Å) 5.89 6.13 17.97 11.98 11.98
b (Å) 5.89 6.13 17.99 12.02 6.04
c (Å) 2.68 2.75 2.81 2.83 2.81
α (°) 90.0 83.1 90.0 89.6 89.2
β (°) 90.0 98.8 90.0 90.2 90.4
γ (°) 120.0 120.0 120.0 120.1 120.3

Cr1-Cl (Å) 2.35x6 2.37x6 2.36x6 2.36x6 2.36x3
2.36x2
2.37x1

Cr2-Cl (Å) - - 2.36x2 2.36x2 2.36x2
2.33x1 2.33x1 2.33x1
2.34x1 2.34x1 2.34x1
2.34x1 2.34x1 2.35x1

III. ELECTRONIC STRUCTURES AND DENSITY OF STATES

FIG. 2. DFT GGA spin-resolved electronic band structures (left panel: light gray for spin-down and dark blue for spin-up) and
projected density of states (right panel: left for spin-down and right for spin-up) of the pure monolayer CrCl3 (a) and O-CrCl3
structure (b).
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FIG. 3. Total density of states for O-CrCl3 structures calculated with GGA + U (a) and GGA (b) approaches.
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FIG. 4. DFT GGA spin-resolved electronic band structure (left panel: light gray for spin-down and dark blue for spin-up) and
projected density of states (right panel: left for spin-down and right for spin-up) of pure monolayer CrCl3 (a) and Cl defective
monolayer CrCl3 with increasing Cl vacancy concentrations of 1.85 % (b), 4.16 % (c), and 8.33 % (d).
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FIG. 5. Total density of states, calculated with GGA + U (a) and GGA (b) methods, for pure monolayer CrCl3 (black) and
Cl defective monolayer CrCl3 structures: (3×3) 1.85 % Cl vacancy (red), (2×2) 4.16 % Cl vacancy (green), and (2×1) 8.33 %
Cl vacancy (blue).
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