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I. CORE LEVEL PHOTOEMISSION

The core level spectra reported in the main article have been quantitatively analyzed to determine the relative
Cl/Cr atomic ratio and the elemental surface concentration by considering the values of 0.770 and 0.711 of the atomic
sensitivity factors as reported in Ref. [1]. The Cr atomic sensitivity factor has been recalculated by assuming the
presence of Cr in two phases, namely CrClz and CrO3. Under this assumption, the Cr 2p3/, atomic sensitivity factor
(ASF¢,) can be estimated from the experimentally measured spectral area (Ac,.) of the Cr 2p core level with the
following:

SACT

ASF r = )
"7 240/0.711 + A /0.770

where Ap and A, are the experimental areas of O 1s and Cl 2p, respectively.
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FIG. 1. Comparison with literature of normalized Cr 2p3,5 spectrum of this work (acquired after 1 hour 100 °C UHV annealing

(black)). Powder phase CrCls reference spectrum is digitized form Ref. [2] (red). Cr2Os reference spectra are digitized from
Ref. [3] (blue) and Ref. [4] (blue).



II. STRUCTURAL PARAMETERS

TABLE I. Optimized structural parameters for pure and oxidized CrCls monolayers and Cl defective CrCls supercells. Cr; is a
Cr atom with an unperturbed (non defective) first neighboring shell of 6 Cl atoms (labeled as Cly), while Crz atoms are those
Cr ones in the structure which are first neighbors of a Cl vacant site (labeled as Clz).

Pure Oxidized (3x3) (2x2) (2x1)

a (A) 589  6.13  17.97 11.98 11.98
b(A) 58 613 17.99 12.02 6.04
c (A) 268 275 281 283 281
a(°) 90.0 831  90.0 89.6 89.2
B (°) 90.0 988  90.0 902 90.4
v (°) 1200 120.0 120.0 120.1 120.3
Cr1-Cl (A) 2.35x6 2.37x6 2.36x6 2.36x6 2.36x3
2.36x2
2.37x1
Cro-Cl (A) - - 2.36x2 2.36x2 2.36x2

2.33x1 2.33x1 2.33x1
2.34x1 2.34x1 2.34x1
2.34x1 2.34x1 2.35x1

III. ELECTRONIC STRUCTURES AND DENSITY OF STATES

4 4 4 4
T T T T
(a) — | —Ci3p ] (b) 1 —Cl3p |
Cr3d Cr3d
_ = ] —— _
o === ng 2 2 — o2p -2
T 1 R — — 1
3 0 0 20 0
() ()
> S==—— g ] s — | : |
o 5 — ;
c -2 - -2 c -2 | > - -2
) ===
4 4 4 4 é_ 4 4
— e <1' T = .
-6 ' L1 -6 -6 ; L1 6
G Y S X G -20 0 20 G M K G -10 0 10
PDOS (electrons/eV) PDOS (electrons/eV)

FIG. 2. DFT GGA spin-resolved electronic band structures (left panel: light gray for spin-down and dark blue for spin-up) and
projected density of states (right panel: left for spin-down and right for spin-up) of the pure monolayer CrCls (a) and O-CrCls
structure (b).
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FIG. 3. Total density of states for O-CrCls structures calculated with GGA + U (a) and GGA (b) approaches.
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FIG. 4. DFT GGA spin-resolved electronic band structure (left panel: light gray for spin-down and dark blue for spin-up) and
projected density of states (right panel: left for spin-down and right for spin-up) of pure monolayer CrCls (a) and Cl defective
monolayer CrCls with increasing Cl vacancy concentrations of 1.85 % (b), 4.16 % (c), and 8.33 % (d).
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FIG. 5. Total density of states, calculated with GGA + U (a) and GGA (b) methods, for pure monolayer CrCls (black) and
Cl defective monolayer CrCls structures: (3x3) 1.85 % Cl vacancy (red), (2x2) 4.16 % Cl vacancy (green), and (2x1) 8.33 %
Cl vacancy (blue).
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