Water dissociation and association on mirror twin boundaries in two-dimensional MoSe₂: insights from density functional theory calculations

T. Joseph¹, M. Ghorbani-Asl¹, M. Batzill², and Arkady V. Krasheninnikov^{1,3}

¹Institute of Ion Beam Physics and Materials Research,Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany

²Department of Physics, University of South Florida, Tampa, FL 33620, USA ³Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Finland

1 Oxygen Reduction Reaction

The free energy of reactions detailed in Eq.(3) to Eq.(4) in the paper can be expressed using Eq.(2) as (see Ref. [1] for detail):

$$\Delta G_1 = G_{*_{\text{OOH}}} - G_{*_{\text{O}_2}} - 0.5G_{\text{H}_2} + U_{\text{eq}} \tag{S1}$$

$$\Delta G_2 = G_{*0} + G_{H_20} - G_{*OOH} - 0.5G_{H_2} + U_{eq}$$
(S2)

$$\Delta G_3 = G_{^{*}\rm{OH}} - G_{^{*}\rm{O}} - 0.5G_{\rm{H}_2} + U_{\rm{eq}} \tag{S3}$$

$$\Delta G_4 = G_{\rm H_2O} + G_* - G_{\rm *OH} - 0.5G_{\rm H_2} + U_{\rm eq} \tag{S4}$$

where $U_{eq} = eU - k_BT \ln 10 \times pH$. However, due to the high-spin ground state of the O₂ molecule, the free energy is poorly described within the framework of DFT. To circumvent this problem when using the Eq.S1-S4, the reaction free energy of following equations is used:

* + 2 H₂O
$$\iff$$
 *OOH + $\frac{3}{2}$ H₂ (S5)

$$^{*} + H_{2}O \iff ^{*}O + H_{2}$$
(S6)

* +
$$H_2O \iff {}^*OH + \frac{1}{2}H_2$$
 (S7)

Thus, the reaction free energies, Eqs. S5 to Eq. S7, can be expressed as:

$$\Delta G_{\rm *OOH} = 1.5G_{\rm H_2} + G_{\rm *OOH} - 2G_{\rm H_2O} - G_* \tag{S8}$$

$$\Delta G_{*_{O}} = G_{H_2} + G_{*_{O}} - G_{H_2O} - G_{*} \tag{S9}$$

$$\Delta G_{*_{\rm OH}} = 0.5G_{\rm H_2} + G_{*_{\rm OH}} - G_{\rm H_2O} - G_* \tag{S10}$$

At equilibrium potential of 1.23 V, the reaction free energy of $O_2 + 4 H^+ + 4 e^- \iff 2 H_2O$ is 4.92 eV. Combining with Eqs. S8 – S10, the free energy in Eqs. S1 – S4 can be rewritten as:

$$\Delta G_1 = \Delta G_{^*\text{OOH}} - 4.92 + U_{\text{eq}} \tag{S11}$$

$$\Delta G_2 = \Delta G_{^*O} - \Delta G_{^*OOH} + U_{eq} \tag{S12}$$

$$\Delta G_3 = \Delta G_{^*\rm OH} - \Delta G_{^*\rm O} + U_{\rm eq} \tag{S13}$$

$$\Delta G_4 = -\Delta G_{^*\rm OH} + U_{\rm eq} \tag{S14}$$

References

[1] S. Tian, C. Deng, Y. Tang, and Q. Tang. Effect of adatom doping on the electrochemical performance of 1t-mos2 for oxygen reduction reactions. *The Journal of Physical Chemistry C*, 124(45):24899–24907, Nov 2020.

Table S1: Bond length .						
Bond length	Pristine	44IP	44IE	5518		
H ₂ O	2.6 Å	2.6 Å	2.5 Å	2.4 Å		
OH [O-Se]	2.1 Å	2.1 Å	1.9 Å	1.9 Å		
O [O–Se]	1.7 Å	1.7 Å	1.7 Å	2.0 Å [O-Mo]		
H [H-Mo]	1.9 Å	1.9 Å	1.9 Å	1.8 Å		

Overpotential	Pristine	44IP	44IE	5518
-	1.34 V	1.26 V	1.19 V	1.25 Å

Figure S1: (a)-(c) Water adsorption on $MoSe_2$ at various sites. (d) Bader analysis of H_2O on $MoSe_2$. The charge analysis shows slight polar behaviour of $MoSe_2$ indicating that the electrostatic attraction is the main reason for orientation of H_2O in the most favourable absorption configuration i.e. schematic (c).

Figure S2: (a)-(d) OOH adsorption on $MoSe_2$ at various sites. (a) Pristine (b) 44lP (c) 44lE (d) 55l8.

Figure S3: Schematic view of OH and O_2 association and dissociation reactions: on Pristine, 44|P, 44|E and 55|8 systems.

Figure S4: The energy diagram for the 2- (red) and 4-electron (gray) oxygen reduction, on 44lP MTB. The electrochemical barrier for *OOH to *O is slightly lower than that for *OOH to H_2O_2 .

Figure S5: Projected density of states (PDOS) for OH adsorbed on pristine and 44lP MTB MoSe₂. The red and gray lines indicate the states for the MoSe2 monolayer and adsorbate, respectively.