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1. Introduction of other forecasting methods for comparison

Typical forecasting methods available in the python library scikit-learn [1] are 

employed in the present work to compare with the SISSO algorithm [2] adopted in this 

study, which are briefly described as following:

1.1. Linear regression

Linear regression (LR) [3] is one of the simplest and oldest methods to build the 

relationship between different quantities, in which the targeted property is a linear 

combination of the features. The least-squares fitting, which fits the linear model to 

minimize the residual sum of squares between the predicted values and actual values of 

the targeted property, is used in this work.

1.2. Support vector regression

The support vector regression (SVR) [4] is based on the structural risk 

minimization principle. It employs kernel functions to convert the features into a higher 

dimensional space according to the targeted property. Two kernel functions are used in 

this work, the linear function (SVR_lin) [5] and the radial basis function (SVR_rbf) [6].

1.3. Decision tree regression
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The decision trees (DTs) [7], including the ID3, C4.5, CART algorithms, are non-

parametric supervised learning algorithms used for classification and regression. One 

of the DT algorithms, the classification and regression trees (CART) [8], which 

constructs binary trees using the feature and threshold that yield the minimum mean 

squared error at each node, is utilized in the present work.

1.4. Random forest regression

Random forest (RF) regression [9] is a parallel ensemble learning approach using 

DT as the base learner. Individual DTs usually exhibit high variance and tend to overfit. 

RF can achieve a reduced variance by taking an average of predictions of individual 

DTs with a slight increase of bias.

2. Performance of other forecasting methods for comparison 

The LR is first employed to fit linear models for the relationship between targeted 

properties and features based on the least squared approximation. The  and  affect 𝑑 𝜆

strength and work of fracture are expressed as

𝜎𝑠 = 0.1637𝑑 ‒ 66.88𝜆 + 66.81#(𝑆1)

𝑊𝑐 = - 0.0238𝑑 ‒ 2.382𝜆 + 2.578#(𝑆2)

Fig. S1a and Fig. S1b plot the predicted results of LR models against the MD-calculated 

values of strength and work of fracture, respectively. It is found that the linear models 

cannot predict targeted properties with  and  well. The averaged  is 0.7294, in 𝑑 𝜆 𝑅2

which  for strength and for work of fracture.𝑅2 = 0.8974 𝑅2 = 0.5613 
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Fig. S1 Predictions of (a) strength ( ) and (b) work of fracture ( ) by the linear regression (LR) 𝜎𝑠 𝑊𝑐

model against real values calculated by molecular dynamics (MD) simulations.

Table S1 Hyperparameters that should be tuned for each machine learning algorithm.

ML model hyperparameters Set of values

SVR_lin C 0.1, 1, 10, 100, 1000, 10000, 100000

C 0.1, 1, 10, 100, 1000, 10000, 100000
SVR_rbf

gamma “auto”, “scale”

max_depth 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
DT

max_features 1, 2

RF n_estimators
65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 

125

Defining the architecture of an ML model is important before training it. Those 

parameters defining the architecture of an ML model are termed as hyperparameters. 

The hyperparameters that need to be tuned for good performance of the next four ML 

algorithms are listed in Table S1. Only one or two hypermeters affect the performance 

of SVR_lin, SVR_rbf, and DTs, while there are more hypermeters related to the 

performance of an RF model. Three dominant hyperparameters of the RF model, 

n_estimators, max_depth, and max_feature, are considered in this work. Since an RF is 

assembled by individual DTs, we use the DTs with tuned hyperparameters as the base 

learner of RF for convenience, i. e., the max_depth and max_features of RF are the 

same as the searched values of DT. Only the n_estimators, the number of trees that 

form the forest, is tuned for the RF model. The grid search is applied to tune those 

hyperparameters within the sets of values listed in Table S1. The hyperparameter tuning 

processes for SVR_lin, SVR_rbf, DT, and RF are displayed in Fig. S2. The maximum 

averaged  and the corresponding hyperparameters for each algorithm are listed in 𝑅2

Table S2. 
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Fig. S2 Performance of (a) SVR_lin, (b) SVR_rbf, (c) DT, and (d) RF models with different 

hyperparameters.

Table S2 Maximum  of each machine learning algorithm and corresponding hyperparameters.𝑅2

ML model Maximum 𝑅2 Hyperparameters

SVR_lin 0.7162 C = 10

SVR_rbf 0.8980 C = 10000; gamma = “auto”

DT 0.8385 max_depth = 4; max_features = 2

RF 0.8771 n_estimators = 70

It is noticed from the training results that the SVR_rbf outperforms other ML 

algorithms with an averaged  of 0.898 when  and . The 𝑅2 C = 10000 gamma = "auto"

DT and RF also show superior performance than the linear models. The weakest model 

SVR_lin has similar performance with the linear models. Fig. S3 shows the predicted 

strength and work of fracture in all test sets using the SVR_rbf model against the MD-

calculated values. It performs much better than the linear models on the predictions of 

high strength and high work of fracture.

The tree-based algorithm can provide feature importance to interpret the ML 

models. For instance, in the current work, the feature importance of two fed features in 

RF models are given as Fig. S4.
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Fig. S3 Predictions of (a) strength ( ) and (b) work of fracture ( ) by the SVR_rbf model against 𝜎𝑠 𝑊𝑐

real values calculated by molecular dynamics (MD) simulations.

Fig. S4 Feature importance obtained by random forest method.
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