Bimetallic Au-Pd nanoparticles supported on silica with tunable core@shell structure: Enhanced catalytic activity of Pd(core)-Au(shell) over Au(core)-Pd(shell)

Gauravjyoti D. Kalita^a, Podma P. Sarmah^a, Golap Kalita^b, Pankaj Das^a*

^aDepartment of Chemistry, Dibrugarh University, Dibrugarh, Assam, India, 786004. ^bDepartment of Physical Science and Engineering, Nagoya Institute of Technology (NiTech), Nagoya, Aichi, Japan-466-8555.

Supporting Information

Fig. S1 (a) TEM image and size-distribution histogram (50 particles per site count) of $SiO_2@Au$ with corresponding (b) HRTEM image and SAED pattern depicted on inset; (c) TEM image and size-distribution histogram (50 particles per site count) of $SiO_2@Pd$ with corresponding (d) HRTEM image and SAED pattern depicted on inset

Fig. S2 XPS survey spectrum of the as prepared (a) $SiO_2@Au$, (b) $SiO_2@Pd$ (c) $Pd@Au-SiO_2$ and (d) $Au@Pd-SiO_2$ materials

Fig. S3 FESEM-EDS images (a) electron image with corresponding elemental distributions (b) O Ka 1 (c) Si Ka1 (d) Au La1 (e) Pd La1 (f) P Ka1 of nanoparticle incorporated Pd@Au-SiO₂ material

Fig. S4 FESEM-EDS images (a) electron image with corresponding elemental distributions (b) O Ka 1 (c) Si Ka1 (d) Au La1 (e) Pd La1 (f) P Ka1 of nanoparticle incorporated Au@Pd-SiO₂ material

Fig. S5 FESEM images (a) and (b) for Pd@Au-SiO₂; and (c) and (d) for Au@Pd-SiO₂

Fig. S6 FESEM-EDX spectra of (a) Pd@Au-SiO₂ and (b) Au@Pd-SiO₂

Fig. S7 TEM micrographs and line scan profiles (inset) for (a) $Au@Pd-SiO_2$ and (b) $Pd@Au-SiO_2$ along with the respective scanned cross-sections for (c) $Au@Pd-SiO_2$ and (d) $Pd@Au-SiO_2$

Solvent	Reductant	Substrate (mmol)	Time (h)	Conversion [%] ^b	Selectivity [%] ^{b, c}
EtOH	NH ₃ . BH ₃	2	5	44	86
EtOH	HCOONH ₄	2	1	18	99
EtOH	НСООН	2	1	20	99
EtOH	H_2	2	1	4	99
EtOH	N_2H_4 . H_2O	2	0.5	42	99
EtOH	N ₂ H ₄ . H ₂ O	2	1	88	98
EtOH	N ₂ H ₄ . H ₂ O	2	2	98	88
EtOH	N_2H_4 . H_2O	4	1	76	96
EtOH	Ethanol	2	5	NR	-
<i>i</i> -PrOH	<i>i</i> -PrOH	2	5	NR	-
EtOH	$NaBH_4$	2	3	35	80
EtOH	Ascorbic acid	2	24	2	99
	EtOH EtOH EtOH EtOH EtOH EtOH EtOH EtOH	BetohNH3. BH3EtOHHCOONH4EtOHHCOOHEtOHH2EtOHN2H4. H2OEtOHN2H4. H2OEtOHN2H4. H2OEtOHN2H4. H2OEtOHEtOHEtOHN2H4. H2OEtOHN2H4. H2OEtOHN2H4. H2OEtOHN2H4. H2OEtOHN2H4. H2OEtOHEthanol <i>i</i> -PrOH <i>i</i> -PrOHEtOHNaBH4EtOHAscorbic acid	SolventReductantSubstance (minor)EtOH NH_3 . BH_3 2EtOH $HCOONH_4$ 2EtOH $HCOOH$ 2EtOH H_2 2EtOH N_2H_4 . H_2O 2EtOH N_2H_4 . H_2O 2EtOH N_2H_4 . H_2O 2EtOH N_2H_4 . H_2O 4EtOH N_2H_4 . H_2O 4EtOHEthanol2 <i>i</i> -PrOH <i>i</i> -PrOH2EtOHNaBH_42EtOHAscorbic acid2	Stovent Reductant Stostate (ninot) Fine (n) EtOH NH ₃ . BH ₃ 2 5 EtOH HCOONH ₄ 2 1 EtOH HCOOH 2 1 EtOH HCOOH 2 1 EtOH H2 2 1 EtOH H2 2 1 EtOH N ₂ H ₄ . H ₂ O 2 0.5 EtOH N ₂ H ₄ . H ₂ O 2 1 EtOH N ₂ H ₄ . H ₂ O 2 2 EtOH N ₂ H ₄ . H ₂ O 4 1 EtOH N ₂ H ₄ . H ₂ O 4 1 EtOH Ethanol 2 5 <i>i</i> -PrOH <i>i</i> -PrOH 2 5 EtOH NaBH ₄ 2 3 EtOH Ascorbic acid 2 24	SolventReductantSubstrate (minor)Fine (ii)Conversion [70]EtOHNH3. BH32544EtOHHCOONH42118EtOHHCOOH2120EtOHH2214EtOHN2H4. H2O20.542EtOHN2H4. H2O2188EtOHN2H4. H2O2298EtOHN2H4. H2O4176EtOHEthanol25NRi-PrOHi-PrOH25NREtOHNaBH42335EtOHAscorbic acid2242

Table S1 Hydrogenation of 4-CNB with $Pd@Au-SiO_2$ core-shell nanoparticles as catalysts under liquid phase conditions ^{*a*}

[a] Reaction conditions: Pd@Au-SiO₂ [Au (0.13 mol%), Pd (0.15 mol%)], ethanol (5 mL), 400 rpm at 80°C,
[b] Determined by GC-MS analysis, [c] Aniline (AN) was formed as the sole by-product [d] H₂ gas pressure was maintained at 1 bar.

Entry	Solvent (ratio)	Time (h)	Conversion (%) ^c	Selectivity (%) ^c
1	H ₂ O (Neat)	24	-	99
2	EtOH: H ₂ O (1:1)	10	64	99
3	EtOH: H ₂ O (1:10)	10	Trace	99
4	DMSO	8	62	99
5	MeOH: H ₂ O (1:1)	5	89	99
6	MeOH: H ₂ O (1:10)	12	60	99
7	^{<i>i</i>} PrOH: H ₂ O (1:1)	1	90	99
8^b	⁷ PrOH: H ₂ O (1:1)	1	95	99
9	^{<i>i</i>} PrOH: H ₂ O (1:5)	1	36	99
10	^{<i>i</i>} PrOH: H ₂ O (1:10)	1	Trace	99

Table S2 Comparison of catalytic efficiency of Pd@Au-SiO₂ with different solvents for hydration of benzonitrile ^{*a*}

[a] Reaction conditions: Benzonitrile (0.5 mmol), Pd@Au-SiO₂ [Au (0.09 mol%), Pd (0.11 mol%)], solvent (4 mL), 400 rpm, 50°C, **[b]** 60°C, **[c]** Determined by GC-MS analysis.

phase conditions "						
	Entry	Substrate (mmol)	Temperature (°C)	Time (min)	Conversion [%] ^b	Selectivity [%] ^b
	1	0.5	40	60	78	99
	2	0.5	50	60	90	99
	3	0.5	60	20	34	99
	4	0.5	60	40	69	99
	5	0.5	60	60	95	99
	6	1	60	60	85	99
	7	0.5	70	60	97	99
	8	0.5	80	60	96	99

Table S3 Hydration of benzonitrile with $Pd@Au-SiO_2$ core-shell nanoparticles as catalysts under liquid phase conditions ^{*a*}

[a] Reaction conditions: Pd@Au-SiO₂ [Au (0.09 mol%), Pd (0.11 mol%)], ^{*i*}PrOH: H₂O (1:1) (4 mL) and 400 rpm, **[b]** Determined by GC-MS analysis

Calculation of shell widths from XPS peak intensities

High-resolution XPS spectra were taken (Figure 5b and 5c), from which the peak areas of C 1s, Pd 3d and Au 4f were measured and the ratios A_C/A_{Pd} , A_C/A_{Au} and A_{Pd}/A_{Au} were calculated.

where, A_C = Absorption intensity of C_{1s} peak,

 A_{Pd} = Absorption intensity of $Pd_{3d_{3/2}}$ peak, and

 A_{Au} = Absorption intensity of $Au_{4f^{5/2}}$ peak.

This reference method was adopted from a recent work by Yan et al.¹ that involved a similar calculation² with XPS binding energies for thiol functionalized Au NPs.

GC-Mass spectra of Products

Hydrogenation

4-chloroaniline

Instrument : GCMSD Sample Name: HM27 Misc Info : Vial Number: 1

4-bromoaniline

Instrument : GCMSD Sample Name: GNB-L Misc Info : Vial Number: 1

4-fluoroaniline

Instrument : GCMSD Sample Name: 1-Fluoro-4-Nitrobenzene Misc Info : Vial Number: 7

3-chloro-4-nitroaniline

Instrument : GCMSD Sample Name: 1-Chloro-2,5-Dinitrobenzene Misc Info : Vial Number: 5

2-chloro-4-nitroaniline

Instrument : GCMSD Sample Name: 1-Chloro-2,5-Dinitrobenzene Misc Info : Vial Number: 5

2,5-dichloroaniline

Instrument : GCMSD Sample Name: 2,5-Dichloro-1-Nitrobenzene Misc Info : Vial Number: 3

4-aminobenzonitrile

Instrument : GCMSD Sample Name: 4-Nitrobenzonitrile Misc Info : Vial Number: 1

4-methoxyaniline

4-methylaniline

Instrument : GCMSD Sample Name: 4-Nitrotoluene Misc Info : Vial Number: 4

4-aminobenzaldehyde

4-aminoacetophenone

Instrument : GCMSD Sample Name: 4-Nitroacetophenon Misc Info : Vial Number: 2

4-aminobenzoic acid

Instrument : GCMSD Sample Name: 4-nitrobenzoic acid Misc Info : Vial Number: 6

Nitrile Hydration

Nicotinamide

Instrument : GCMSD Sample Name: HM27 Misc Info : Vial Number: 1

Isonicotinamide

Instrument : GCMSD Sample Name: GNB-F Misc Info : Vial Number: 1

22

Picolinamide

Instrument : GCMSD Sample Name: CB-1 Misc Info : Vial Number: 1

4-fluorobenzamide

Instrument : GCMSD Sample Name: HM-28 Misc Info : Vial Number: 1

4-chlorobenzamide

Instrument : GCMSD Sample Name: CC Misc Info : Vial Number: 1

4-bromobenzamide

Instrument : GCMSD Sample Name: CB Misc Info : Vial Number: 1

26

4-methylbenzamide

Instrument : GCMSD Sample Name: 38 Misc Info : Vial Number: 1

Benzamide

Instrument: GCMSD Sample Name: DS2 Misc Info: Vial Number: 1

4-methoxybenzamide

Instrument : GCMSD Sample Name: GNB-K Misc Info : Vial Number: 1

4-nitrobenzamide

Instrument : GCMSD Sample Name: GNB-D Misc Info : Vial Number: 1

4-aminobenzamide

Instrument : GCMSD Sample Name: GNB-K Misc Info : Vial Number: 1

4-(bromomethyl)benzamide

Instrument : GCMSD Sample Name: GNB-H Misc Info : Vial Number: 1

4-(cyanomethyl)benzamide

Instrument : GCMSD Sample Name: GNB-D Misc Info : Vial Number: 1

Notes and references

- 1 Y. M. Jayawardena H. S. N., Liyanage Sajani H., Rathnayake K., Patel U., *Anal. Chem.*, 2021, **93**, 1889–1911.
- A. Müller, T. Heinrich, S. Tougaard, W. S. M. Werner, M. Hronek, V. Kunz, J. Radnik, J. M. Stockmann, V. D. Hodoroaba, S. Benemann, N. Nirmalananthan-Budau, D. Geißler, K. Sparnacci and W. E. S. Unger, *J. Phys. Chem. C*, 2019, **123**, 29765–29775.