Understanding multiscale structure-property correlations in PVDF-HFP electrospun fiber membranes by SAXS and WAXS

Anjani K. Maurya^{1, 2, 3}, Eloïse Mias¹, Jean Schoeller^{2,4}, Ines E. Collings¹, René M. Rossi^{2,4}, Alex Dommann^{1, 3}, Antonia Neels^{*1,5}

¹Empa, Swiss Federal Laboratories for Materials Science and Technology, Center for X-Ray Analytics, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland

²Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland

³ARTORG Center for Biomedical Engineering Research, University of Bern, Murtenstrasse 50, 3008 Bern, Switzerland

⁴ETH Zürich, Department of Health Science and Technology, 8092 Zürich, Switzerland

⁵Department of Chemistry, University of Fribourg, Avenue de l'Europe 20, 1700 Fribourg, Switzerland

*Corresponding author: Antonia Neels, Email: <u>antonia.neels@empa.ch</u> Empa, Swiss Federal Laboratories for Materials Science and Technology Center for X-Ray Analytics, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland

S1. Macoscopic image of the fiber membrane

Figure S1: Image of the electrospun fibers membrane.

S2. Peak indexing based simulated α and β phases of PVDF

Figure S2. The diffraction of the fiber membrane prodiced at 23.0 m/s rotating speed integrated with a 30° wedge in the vertical (black line) and horizontal (grey line) directions. The simulated profiles of the alpha and beta phases are also shown with a preferred orientation down the (110) direction with a March-Dollase parameter of 0.5 using the Mercury software.

S3. The area under peaks determined by fitting of the WAXD data

Areasample	Amorphous	(100/020)a	(110)α	(110/200)β	$(021/111/120)_{\alpha}$
A _{0.5m/s}	0.40	0.71	0.45	0.08	0.10
A _{23.0m/s}	0.95	0.71	0.02	0.82	0.06

Table S1: The determined area under peaks from the fitting of the WAXD data and calculated percentage of α - and β -phases.

Area (total α+β phases)	Area (β phase)	Area (total α phase)	%β	%α
1.34	0.08	1.26	6	94
1.61	0.82	0.79	51	49

S4. Fourier-transform infrared spectroscopy (FTIR)

FTIR measurements were performed on a Bruker Vertex 80 FTIR spectrometer. For each sample, spectra were recorded at a range of 700 to 1500 cm⁻¹. The spectrometer was equipped with 3 integrated spheres, one for reflectance measurements in the solar range (0.3 to 2.5 μ m). The IR detector was cooled with liquid nitrogen. FTIR provides information about the chemical composition of the materials. Therefore, it was used for quantifying the different phases of the PVDF-HFP.

The IR spectras were compared to the literature [1-3].

Figure S3: FTIR spectra of the electrospun fiber membrane produced at 0.5 m/s and 23.0 m/s rotating drum speed.

The β phase of PVDF-HFP is well-known to exhibit the highest electroactive properties [4].

According to figure S4, the PVDF-HFP electrospun fibers produced at 23.0 m/s contained more β phase than the electrospun membrane at 0.5 m/s speed. The membrane produced at 23.0 m/s exhibit high intensity at the wavenumbers of 1275 cm⁻¹ and 840 cm⁻¹, which corresponds the main peaks for the β phase compared to membrane produced at 0.5 m/s speed. Moreover, at the wavelengths of 980 cm⁻¹ and 760 cm⁻¹, which are the main peaks for *a*-phase, non aligned fibers produced at 0.5 m/s speed has higher interestity compeared to aligned fiber membranes produced at 23.0 m/s.

References

- Gheibi, A., et al., *Electrical power generation from piezoelectric electrospun nanofibers membranes: electrospinning parameters optimization and effect of membranes thickness on output electrical voltage.* Journal of Polymer Research, 2014.
 21(11): p. 14.
- 2. Lanceros-Mendez, S., et al., *FTIR and DSC studies of mechanically deformed beta-PVDF films*. Journal of Macromolecular Science-Physics, 2001. **B40**(3-4): p. 517-527.
- 3. Salimi, A. and A.A. Yousefi, *FTIR studies of beta-phase crystal formation in stretched PVDF films*. Polymer Testing, 2003. **22**(6): p. 699-704.
- 4. Mokhtari, F., M. Latifi, and M. Shamshirsaz, *Electrospinning/electrospray of polyvinylidene fluoride (PVDF): piezoelectric nanofibers*. Journal of the Textile Institute, 2016. **107**(8): p. 1037-1055.