Supporting Information

Synthesis of crystalline WS₃ with layered structure and desert-rose-like

morphology

Zeyao Zhang,^{a, c} Yi Qiu,^a Wenqing Yan,^{a, b} Zhengyang Zhou,^a Yixi Yao,^{a, b} Xiyan Liu,^a Junliang Sun, ^a and Yan Li^{* a, b, c}

a. Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.

b. Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.

c. PKU-HKUST ShenZhen-HongKong Institution, Shenzhen, 518057, China

*Corresponding Author. E-mail: yanli@pku.edu.cn

Discussion on determing the composition of WS₃ sample

Inductively-coupled-plasma-based quantitative analysis methods, for example, inductively coupled plasma optical emission spectrometry (ICP-OES), are very useful tools for analysis of compositon because of their good accuracy. However, Proper digestion method is crucial for accurate analysis of solid samples. The main issue for our WS₃ sample is the digestion of S anions. Because of the volatile species of S, such as H₂S and SO_x, digestion based on closed vessels is necessary. Teflon vessel is not recommended for digestion of S because it may cause loss of S analyte.¹ Therefore, specially designed high-pressure quartz vessels were employed in some papers for accurate digestion of S, either using high pressure asher² or microwave digestion system.³

Unfortunately, we did not have access to the high-pressure quartz vessel. So, we tried autoclave with Teflon vessel for digestion of our WS₃ sample. We took two fractions from the very same WS₃ sample for digestion and measured the concentration of W and S with ICP-OES. The S/W ratios were 2.44 ± 0.04 for one fraction and 2.06 ± 0.08 for another. The large inconsistency indicates a significant loss of S during the digestion and thus an underestimation of the S/W ratio. Therefore, the results of our ICP-OES measurements were not able to reflect the real composition of the WS₃ sample and were not included in the manuscript.

In order to determine the composition of WS3 as best we can, we carried out not only the

XPS analysis but also the thermogravimetric experiments, as discussed in the manuscript.

Figure S1. Raman spectra of the WS₃ sample (excitation laser wavelength: 532 nm). The two dashed line mark the positions of the two typical peaks of WS₂. The full spectrum from 50 to 4000 cm⁻¹ is shown in the inlet, where no peak is found beyond 600 cm⁻¹. The Raman bands of the WS₃ are totally different from the WS₂.

Figure S2. Scanning electron microscopy images of annealed WS₃ at different. The annealing temperatures are 200 °C (a), 300 °C (b), 400 °C (c), 500 °C (d), and 600 °C (e), respectively. The scale bar is 200 nm.

	Preparation method	Overpotential (mV)	Tafel slope (mV/dec)	Ref.
WS ₃	Sulphurization of $WO_3 \cdot 0.33H_2O$ with thioacetamide in DMF	130	86	This work
WS _{2.64}	Electrodeposition from $(NH_4)_2WS_4$ solution	~ 390	43.7	[4]
WS_2	Sulphurization of WCl_6 with S in oleylamine	~100	48	[5]
WS_2	Reaction of WO3 with S at 830 $^\circ$ C on Au foil	110	100	[6]
WS_2	CVD reaction of W foil and S	~100	54	[7]
WS ₂ (both 1T and 2H)	Lithium intercalation and exfoliation from bulk WS ₂	80–100 (1T) 150–200 (2H)	~60 (1T) ~115 (2H)	[8]
$WS_2(1T)$	Microwave-assisted intercalation and exfoliation from CVD-grown WS2	~75	70	[9]
$WS_2(1T)$	Surfactant-Assisted Exfoliation from bulk WS ₂	90	51	[10]
WS ₂ (mainly 1T')	Sulphurization of $(NH_4)_2WO_4$ with thiourea in oleylamine	~120	50.4	[11]
WS ₂ /rGO	Hydrothermal reaction of WCl_6 , thioacetamide, and graphene oxide	150-200	58	[12]

Table S1. Activities of tungsten sulphides as electrochemical catalyst for HER.

References

1. J. Heilmann, S. F. Boulyga and K. G. Heumann, *Analytical and Bioanalytical Chemistry*, 2004, **380**, 190-197.

2. M. Ostermann, M. Berglund and P. D. P. Taylor, *J. Anal. At. Spectrom.*, 2002, **17**, 1368-1372.

- 3. P. Evans, C. Wolff-Briche and B. Fairman, J. Anal. At. Spectrom., 2001, 16, 964-969.
- 4. S. M. Tan and M. Pumera, ACS Appl. Mater. Interfaces, 2016, 8, 3948-3957.
- 5. L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li and H. Dai, *Angew. Chem. Int. Ed.*, 2014, **53**, 7860-7863.
- 6. Y. Zhang, J. Shi, G. Han, M. Li, Q. Ji, D. Ma, Y. Zhang, C. Li, X. Lang, Y. Zhang and Z.

Liu, Nano Res., 2015, 8, 2881-2890.

7. M. Wang, L. Zhang, M. Huang, Q. Zhang, X. Zhao, Y. He, S. Lin, J. Pan and H. Zhu, *J. Mater. Chem. A*, 2019, **7**, 22405-22411.

8. M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh and H. Zhang, *Nat. Chem.*, 2013, 5, 263-275.

9. M. A. Lukowski, A. S. Daniel, C. R. English, F. Meng, A. Forticaux, R. J. Hamers and S. Jin, *Energy Environ. Sci.*, 2014, **7**, 2608-2613.

10. X. Zhao, X. Ma, J. Sun, D. Li and X. Yang, ACS nano, 2016, 10, 2159-2166.

11. Z. Liu, N. Li, C. Su, H. Zhao, L. Xu, Z. Yin, J. Li and Y. Du, *Nano Energy*, 2018, **50**, 176-181.

12. J. Yang, D. Voiry, S. J. Ahn, D. Kang, A. Y. Kim, M. Chhowalla and H. S. Shin, *Angew. Chem. Int. Ed.*, 2013, **52**, 13751-13754.