ELECTRONIC SUPPORTING INFORMATION

Assessing the parameters modulating optical losses of iron oxide nanoparticles under near infrared irradiation

Claudia Lozano-Pedraza,¹ Elena Plaza-Mayoral,¹ Ana Espinosa,^{1,2} Begoña Sot,^{1,2} Aida Serrano,³ Gorka Salas,^{1,2} Cristina Blanco-Andujar,⁴ Geoffrey Cotin,⁴ Delphine Felder-Flesch,⁴ Sylvie Begin-Colin⁴ and Francisco J. Teran^{1,2}

¹*iMdea Nanociencia, Campus Universitaria de Cantoblanco, 28049 Madrid. Spain.*

²Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain.

³ Dpto. Electrocerámica, Instituto de Cerámica y Vidrio, ICV-CSIC, Kelsen 5, 28049 Madrid, Spain.

⁴Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.

14-IONP

15-IONP

19-IONP

S-IONP

O-IONP

.00 nm

FMCT-IONP

LRL-IONP

Fig.S1.-Transmission Electron Microscopy images of the studied IONPs.

Name	Ms (Am²/kg _{Fe})	Hc (kA/m)
8-IONP	92	< 1
14-IONP	106	< 1
15-IONP	107	< 1
18-IONP	55	< 1
19-IONP	104	< 1
FM-CT	120	1.2
LRL	73	3.2
P-IONP	44	< 1
S-IONP	89	< 1
C-IONP	139	≈1
O-IONP	149	< 1

Table S1.- Summary of magnetic parameters from the studied IONPs at RT. L=length; W= width.

Fig. S2.- (a,b,c) Mass-normalized magnetization cycles under quasi-static conditions at RT; (d,e,f) Optical absorption spectra in the NIR range at RT. The studied IONPs were dispersed in DDW at [Fe] = 1 g/L.

Fig. S3.- Magnetic SAR values of LRL IONPs at different D_H . H_{AC} conditions: 100 kHz, 32 kA/m. Iron content in DDW suspension [Fe]=1g/L.

Fig.S4.- Different configurations of the integrating sphere spectrometer for distinct transmission and reflectance measurements: (a) Diffuse transmittance (T_d) : the direct transmittance (T_D) escapes the sphere through the open exit port (without spectralon) on the opposite side of the entrance port; (b) Total transmittance (T_T) : both direct (T_D) and diffuse (T_d) components of transmittance are collected inside the integrating sphere by blocking the exit port with the spectralon; (c) Diffuse reflection (R_d) : direct reflection (R_D) escapes the integrating sphere though the entrance port while diffuse reflection is collected inside the sphere; (d) Total reflection (R_T) : sample holder is rotated 6° in order to collect both direct (R_D) and diffuse (R_d) reflection.

Fig.S5.- Schematic representation of the experimental set up for optical SLP measurements.

Fig.S6.- Temperature increments of LRL suspensions with [Fe]=0 g/L (water) and 0.5 g_{Fe}/L under NIR (808 nm and 0.3 W/cm²).

Fig.S7.- Temperature dynamic evolution of the IONP suspension (blue line) and fitting (red line) according to equation Eq.5 (see Experimental section). NIR conditions : 808 nm and 0.3 W/cm². C-IONPs dispersed in DDW at [Fe]=1g/L.

Fig.S8.- Magnetic SAR values of S-IONPs at different Fe concentrations. HAC conditions: 100 kHz, 32 kA/m.

Fig.S9.- Optical direct transmission (T_D) spectra of S-IONPs dispersed in DDW at different iron concentrations.

	C-IONP	O-IONP
T _{p1} (°C)	26,2	25,8
T _{p2} (°C)	24,5	24,8
$\Delta T = T_{p1} - T_{p2}$	2,3	1

Fig.S10.- Thermal and visible images showing temperature map along NIR direction (red arrow). Table lists the temperature values at p1 (cyan spot) and p2 (red spot) positions for C-IONP and O-IONP suspensions at [Fe]=1g/L. NIR conditions: 808 nm and 0.3 W/m².

Fig.S11.- Magnetic SLP values of IONPs for different (a) TEM size and (b) crystal size. H_{AC} conditions: 100 kHz, 32 kA/m; Irradiation conditions: 808 nm, and 0.3 W/cm². IONPs were dispersed in DDW at [Fe]= 1 g/L.

Fig.S12.- Magnetic SLP values of IONPs with different shape. H_{AC} conditions: 100 kHz, 32 kA/m; Irradiation conditions: 808 nm, 0,3 W/cm². IONPs were dispersed in DDW at [Fe]= 1 g/L.

Fig.S13.- Picture of IONP colloids of different shapes at iron content [Fe]= $0.8 g_{Fe}/L$. Note the differences in colour of suspensions, getting darker in samples to the right.

Fig.S14.- Optical SLP values as a function of irradiation power densities (from 0 to 0.6 W/cm², λ_{exc} = 808 nm) for IONPs of different shapes. The studied IONPs were dispersed in DDW at [Fe]= 1 g/L.

Fig. S15.-AC Hysteresis loops of 19-IONP under H_{AC} (100 kHz and 26 kA/m) subjected to different irradiation power densities at λ_{exc} = 808 nm: 0 (black colour), 0.3 (blue colour) and 0.8 (red colour) W/cm². The studied IONPs were dispersed in DDW at [Fe]= 1 g/L.

Fig.S16.- (a) Hydrodynamic size (b) PDI values (c) number of LRL nanoparticles per mL under different aggregation conditions at two iron contents: 0.5 $g_{Fe}^{/L}$ (black columns) and 1 $g_{Fe}^{/L}$ (cyan columns).

Fig.S17.- Total (T_T), diffuse (T_d) and direct (T_D) transmission, total (R_T) and diffuse (R_d) reflectance, and absorbance (A) of LRL with different D_H at $0.5g_{Fe}/L$.

Fig.S18.- Temperature increments of MCF7 cell pellet (cells) and IONPs inside MCF7 cell pellet (cell with IONPs) under NIR (808 nm and 0.3 W/m_2) or H_{AC} (100 kHz and 32 kA/m)

conditions. The ΔT values were obtained from three repetitions performed in three independent cell pellets. The iron content in the cell suspensions with IONPs was [Fe]= 2 g/L.

Fig.S19.- Magnetic SLP values (colour columns) and temperature increments (white columns) of FM-CT IONP inside MCF7 breast cancer cells and dispersed in DDW suspension at [Fe]= 2 g/L under H_{AC} . Intracellular SLP and ΔT values were obtained from three repetitions performed in three independent cell pellets. H_{AC} conditions: 100 kHz, 32 kA/m.