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Lille, France

‡Now at: Institut of Materials Research Engineering. 2 Fusionopolis Way, Singapore

138634

¶Now at: Univ. Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France, France

§Univ. Lille, CNRS, Centrale Lille, Junia, Univ. Polytechnique Hauts-de-France, UMR

8520 - IEMN - Institut d’Electronique de Microélectronique et de Nasnotechnologie,
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1 Finite element simulations

Numerical simulations have been performed using two open-source softwares, namely FreeFem++

for the numerical resolution of Maxwell equations using FEM,1–3 and Gmsh to create geometries

and generate tetrahedral meshes.4 For reasons of computer resources savings, symmetry (resp.

anti-symmetry) conditions have been applied on the (Oxz) plane for p (resp. s) polarization. In

order to prevent reflection of the scattered field on the boundaries of the simulation domain, an

additional spherical PML (Perfectly Matched Layer) layer has been added around the simulation

domain, delimited by the red dashed line. An example of geometry and mesh is shown on Fig. S1.

Figure S1: Geometry and mesh realized with Gmsh.

We have performed both plane-wave illumination and quasi-normal modes simulations. For that

purpose, the dielectric constant for gold must be written under an analytical form in order to be

able to extend it to complex frequencies. We have then fitted experimental data from Johnson and

Christy5 in the wavelength range between 500 nm and 900 nm with a two-oscillators Drude-Lorentz

model, following :

ϵD(k0) = ϵ∞

(
1− δϵ(k0)

k20

)
(1)

where k0 = ω/c = 2π/λ is the wavenumber, and:

δϵ(k0) =
k2d/ϵ∞

1 + iγd/k0
+

slk
2
l

1 + iγl/k0 − k2l /k
2
0

(2)

The obtained numerical values for the model parameters are listed in Table 1.

Table 1: Drude-Lorentz parameters, obtained by fitting Johnson and Christy data between 500 and 900 nm.
Units are rad/nm, except for ϵ∞.

ϵ∞ kd(10
−2) γd(10

−4) sl kl(10
−2) γl(10

−3)
5.115 4.415 2.817 0.3203 1.435 2.688

2



1.1 Planewave illumination

Simulations of the electromagnetic response of the system under monochromatic planewave illumi-

nation rely on the numerical resolution of the following equation :

∇×∇×Es − ϵb(r)k
2
0Es = [ϵD(k0)− ϵb(r)] k

2
0Eb (3)

where the total electric field reads E = Eb + Es, with Eb the background field resulting from

the reflection of the incident planewave on the glass interface (without the metal nanostructures),

Es the field scattered by the nanostructures, and ϵb(r) the position-dependent dielectric constant

of the glass-air environment. This equation is then translated into its weak-form in order to be

solvable with FEM. Details about the procedure to follow, including explanations about boundary

conditions and finite-elements type can be found in reference.6 Extinction, absorption and scattering

cross-sections are respectively given by:

Cext(k0) =
1

nk0|E0|2
Im

∫
V
drP(r, k0).E

∗
b(r, k0),

Cabs(k0) =
1

nk0|E0|2
Im

∫
V
drP(r, k0).E

∗(r, k0),

Csca(k0) = Cext(k0)− Cabs(k0)

where Im stands for the imaginary part and the polarization vector is defined as:

P(r, k0) = [ϵD(k0)− ϵb(r)]E(r, k0).

1.2 Quasi-normal modes

Quasi-normal modes are complex-frequency (or complex wavenumber) solutions of Eq. 3 without

source term (Eb = 0). This equation must then be rewritten in a shape allowing eigenvectors

computation. Using 1, we obtain:

1

ϵ̃∞(r)
∇×∇×Es + δϵ̃(r, k̃0)Es = k̃20Es (4)

where k̃0 is the complex eigenvalue of the QNM, and:

ϵ̃∞(r) = ϵ∞,

δϵ̃(r, k̃0) = δϵ(k̃0)

}
, r ∈ V,

and:
ϵ̃∞(r) = ϵb(r)

δϵ̃(r, k̃0) = 0

}
, r /∈ V.

where V is the volume of the metal nanostructure. The real part of k̃0 gives access to the resonance

wavelength, λ0 = 2π/Re(k̃0), and the imaginary part to its width ∆λ0 = λ0 Im(k̃0)/Re(k̃0).

It is clear that any solution Es of equation 4 for a particular k̃0 is an eigenvector of the operator

1/ϵ̃∞(r)∇×∇× () + δϵ̃(r, k̃0) for the complex eigenvalue k̃20. However, as this operator explicitly
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and non-linearly depends on k̃0, this equation is self-consistent and cannot be solved directly with

the finite elements method. We choose instead to solve:

1

ϵ̃∞(r)
∇×∇×Es + δϵ̃(r, ke)Es = k̃20Es (5)

where ke is a complex, close-enough estimate of k̃0, which can be extracted for example from

extinction spectra. Equation 5 is then a standard eigenvalue problem and can be solved with

FreeFem++ using a generalized eigenvalue solver. The procedure to calculate the eigenmodes and

eigenvalues is the following:

• compute extinction or absorption spectra under planewave illumination;

• extract estimates ke of eigenvalues (real and imaginary parts) using wavelengths λe and

widths ∆λe for maxima shown in absorption or extinction spectra: ke = 2π/λe(1+ i∆λe/λe);

• solve Eq. 5 to obtain a new value of k̃0;

• iterate ke based on the obtained k̃0 and repeat until convergence is reached.

Figure S2: Numerical computation of plasmonic QNMs: (a) representation of the complex eigenvalues of
equation 5 for a typical iteration; (b) convergency curves of the bonding and anti-bonding modes of the
disconnected system for the standard geometrical parameters; (c) typical meshing (left) and PML (right)
modes.

The main difficulty is to extract the physically meaningful k̃0 among the very large number of

eigenvalues of the operator projected on the basis of finite elements (see figure 2(a)), as most of the

returned eigenvectors are modes either due to the meshing (figure S2(c)) or associated to the PMLs

(figure S2(d)). Fortunately, efficient sorting can be performed on the imaginary part of k̃0, which

is generally comprised between low-losses mesh eigenmodes and large-losses PMLs eigenmodes. In

practice, generally only two or three iterations are necessary to reach a converged eigenvalue with

satisfactory precision, as shown on Fig. 2(b).

2 Uncoupled particles

The response of isolated ND and the NR is plotted on Fig. S3. The incidence plane contains the NR

long axis. Both scattering and absorption spectra of the isolated gold nanodisk are dominated by a
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broad resonance centered at 682 nm, and corresponds to the excitation of the in-plane dipolar mode,

(i). The width of that resonance, of about 100 nm, is related to the contribution of both internal

dissipation and radiation losses. The NR is characterized by longitudinal bright and dark modes,

with alternating positive and negative surface charges, bright modes being antisymmetric along

the NR’s long axis, while dark modes are symmetric. The 84-nm-long NR shows one resonance,

Figure S3: Scattering (thick lines) and absorption (thin lines) spectra of the ND and NRs with two different
lengths L. The incidence plane contains the NR axis, and the polarization is p. The real part of the surface
charges distribution is plotted for each associated QNM, whose wavelength is indicated by dashed lines.

(ii), close to 645 nm, corresponding to the lowest order bright mode, as evidenced by its surface

charges distribution. The 244-nm-long rod shows a maximum close to 715 nm, and corresponds to

the excitation of the lowest order dark mode, (iii). Note that the NR’s dark modes can only be

excited because the illumination direction breaks the longitudinal symmetry of the nanoparticle.

The maxima are close to the wavelengths obtained from QNM modes calculations, indicated by a

vertical dashed line. The discrepancy is the largest for the ND dipole mode, with a value of about

6 nm, as QNM simulations leads to a dipolar mode wavelength of about 687.7 nm and a width

∆λ0 = 114 nm or (∆λ0)/λ
2
0 = 0.24 µm−1, consistent with the spectra. For nanorods, the QNM

wavelengths are 645.8 nm for the short NR (∆λ0 = 48 nm or (∆λ0)/λ
2
0 = 0.12 µm−1) and 716.0

nm for the long NR (∆λ0 = 37 nm or (∆λ0)/λ
2
0 = 0.072 µm−1). The widths are again consistent

with the spectra, and we verify that it is larger for the bright mode than for the dark mode due to

additional radiation losses.
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3 Disconnected system

Figure S4: Numerical modeling of the disconnected system. (a): Absorption spectrum for p polarization,
(b) for s polarization, compared with QNM wavelengths (solid lines) and widths (dashed lines).

Figure S5: Comparison of the numerical scattering extinction spectra with the coupled oscillators model. (a)
FEM simulations (solid black lines) and fit (red crosses), the gap being varied by step of 10 nm from bottom
(g = 10 nm) to top (g = 100 nm). (b) Resonance wavelengths of the diabatic modes for ND (blue) and NR
(orange). (c) Resonance widths of the diabatic modes for ND (blue) and NR (orange). (d) Evolution of the
normalized coupling coefficient g/gc with the gap (gc =

√
ω2
0 − (γb − γb)2/8(γb − γb)/2).
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Figure S6: Comparison of the numerical scattering extinction spectra with the coupled oscillators model.
(a) FEM simulations (solid lines) and fit (red crosses) for NR lengths close to L = 228 nm. (b) Resonance
wavelengths of the diabatic modes for ND (blue) and NR (orange). (c) Resonance widths of the diabatic
modes for ND (blue) and NR (orange). (d) Evolution of the normalized coupling coefficient g/gc with the
NR length.

Figure S7: Comparison of the numerical scattering extinction spectra with the coupled oscillators model.
(a) FEM simulations (solid lines) and fit (red crosses) for NR lengths close to L = 480 nm. (b) Resonance
wavelengths of the diabatic modes for ND (blue) and NR (orange). (c) Resonance widths of the diabatic
modes for ND (blue) and NR (orange). (d) Evolution of the normalized coupling coefficient g/gc with the
NR length.
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4 Connected system

Figure S8: Numerical modeling of the connected system. (a): Absorption spectrum for s polarization, (b)
for p polarization, compared with QNM wavelengths (solid lines) and widths (dashed lines).
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