Supporting Information

Formaldehyde Gas Sensor with Extremely High Response Employing Cobalt-Doped SnO₂ Ultrafine Nanoparticles

Shiqiang Zhou^{§,a,b}, Huapeng Wang^{§,a}, Jicu Hu^{§,a}, Tianping Lv^a, Qian Rong^a, Yumin Zhang^a, Baoye Zi^a, Mingpeng Chen^c, Dongming Zhang^a, Jun Wei^b, Jin Zhang^{*,a} and Qingju Liu^{*,a}

^a Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.

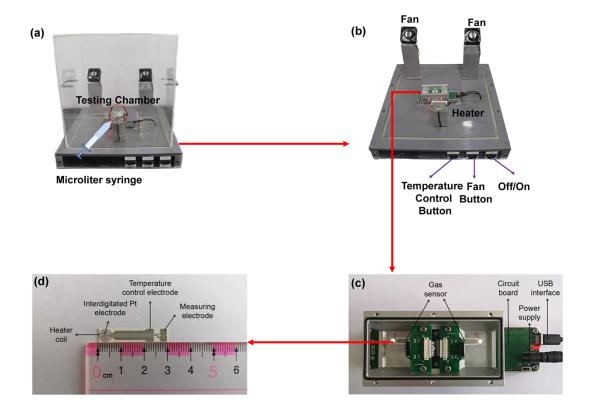
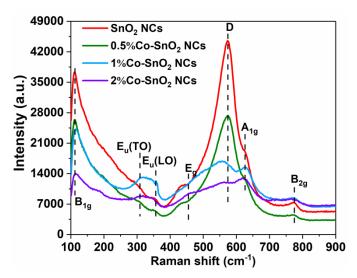
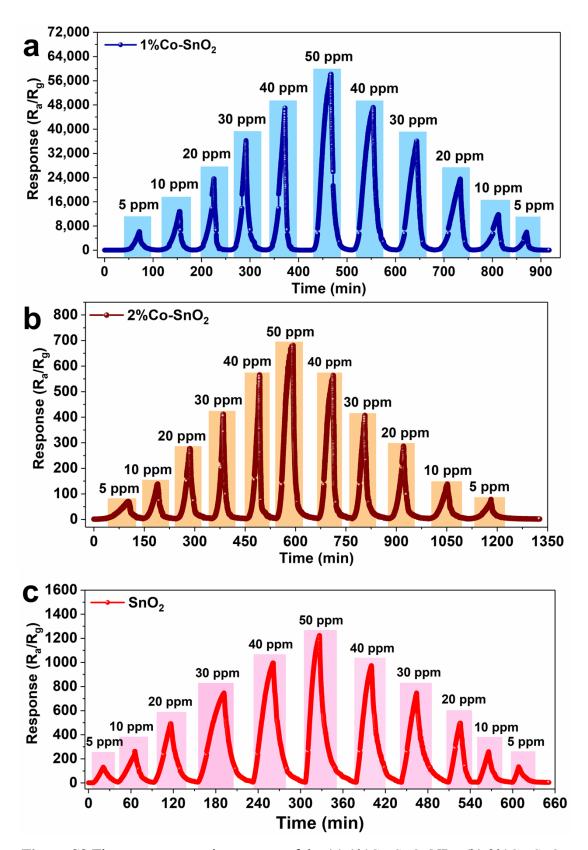
^b Shenzhen Key Laboratory of Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen, University Town, Shenzhen, 518055, China China.

^c Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, China

* Corresponding E-mail: qiliu@ynu.edu.cn

^{*} Corresponding author. E-mail address: qjliu@ynu.edu.cn (Q. Liu), zhj@ynu.edu.cn.

[§] These authors contributed equally to this work.

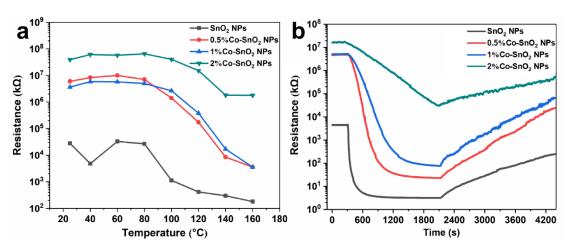

Figure S1 The actual picture of the test device and gas sensor.

Figure S2 The Raman spectra of SnO_2 NPs, 0.5%Co- SnO_2 NPs, 1%Co- SnO_2 NPs, 2%Co- SnO_2 NPs.

Figure S3 The response transient curves of the (a) 1%Co-SnO₂ NPs, (b) 2%Co-SnO₂ NPs, (c) SnO₂ NPs at 90°C and different formaldehyde concentration.

Figure S4 (a) The change curves of resistance R_a of samples in air with temperature, (b) the resistance change curves of the samples with 30 ppm formaldehyde at 90°C.

The sensor noise (RMS_{noise}) is usually calculated from the standard deviation of the sensor baseline. From figure 6 (b), 270 points were collected before the sensor was placed on the target gas, and the calculated standard deviation (S) was 0.0128.

$$RMS_{noise} = \sqrt{\frac{S^2}{N}} \tag{S1}$$

where N is the number of data points. The value of RMS_{noise} is 0.00078. The ratio of signal (S) to noise (N)(S/N) is 3 (International Union of Pure and Applied Chemistry (IUPAC) definition) and the slope is 4259.0 (From figure 9 (b)), therefore:

$$LOD = 3\frac{RMS_{noise}}{Slope} = 3 \times \frac{0.00078}{4259} = 0.00000055 \, ppb$$
 (S2)

in this work, the theoretical detection limit of formaldehyde was estimated to be about $5.5 * 10^{-7}$ ppb.

Calcualtion of the Debye lengths of SnO₂

$$\lambda_D = \sqrt{\frac{\varepsilon k_B T}{q^2 N_0}} \tag{S3}$$

$$\varepsilon_{SnO_2} = 13.5 \times 8.85 \times 10^{-12} \,\mathrm{Fm}^{-1}$$

$$k_{B} = 1.38 \times 10^{-23} \text{ JK}^{-1}$$

$$T = 363 \text{ K}$$

$$q = 1.6 \times 10^{-19} \,\mathrm{C}$$

$$N_{SnO_2} = 3.6 \times 10^{18} \,\mathrm{cm}^{-3}$$

$$\lambda_{SnO_2} = 2.55 \text{ nm}$$