Supporting Information

Two-dimensional Graphitic Carbon Nitride/N-doped Carbon with

Direct Z-scheme Heterojunction for Photocatalytic Generation of

Hydrogen

Jing Wang, ^{a‡} Youcai Sun, ^{a‡} Jianwei Lai, ^b Runhui Pan, ^a Yulei Fan, ^a Xiongwei Wu, ^c Man Ou, ^a Yusong Zhu, ^a Lijun Fu, ^a Feifei Shi, ^{*b} and Yuping Wu^{*a}

^{a.} College of Chemical Engineering and School of Energy Science and Engineering, Nanjing Tech University. Nanjing, Jiangsu, 211816, China. Email: wuyp@njtech.edu.cn

^{b.} John and Willie Leone Family Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA, 16802, USA. Email: feifeishi@psu.edu (Shi)

^{c.} School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China.

‡These authors contributed equally.

Experimental sections

Preparation of N-doped carbon (NC)

NC was prepared by a simple hydrothermal method. Typically, 0.48 g of citric acid and 0.45 g of urea were dissolved in 10 ml deionized water. The above aqueous solution was transferred into a Teflon-sealed autoclave and heated for 8 h at 180 °C. After cooling it to room temperature, the product was collected by centrifuging.

Synthesis of bulk g-C₃N₄ (bulk C₃N₄)

Firstly, 5.0 g melamine was put into an alumina crucible with a cover and heated to 520 °C for 4 h with a ramping rate of 5 °C/min. After cooling it down naturally, the resultant agglomerate was ground into yellow powders, denoted as bulk C_3N_4 .

Synthesis of C₃N₄

Typically, 1.0 g of bulk C_3N_4 and 5.0 g of NH_4Cl mixed thoroughly in a ball mill. Then, the mixture was treated at 550 °C for 3 h at a heating rate of 3 °C/min. The as-synthesized samples were denoted as C_3N_4 .

Synthesis of 2D C₃N₄/NC

2D C₃N₄/NC were prepared via a polymerization method. Specifically, C₃N₄ was modified with NC via a gas-blowing method. This is a process of calcining the mixture of NC, bulk C₃N₄, and NH₄Cl. Typically, 1.0 g of bulk C₃N₄, a certain amount of NC, and 5.0 g of NH₄Cl mixed thoroughly in a ball mill. Then, the mixture was treated at 550 °C for 3 h with a heating rate of 3 °C/min. The as-synthesized samples were denoted as C₃N₄/NC-I, C₃N₄/NC-II, C₃N₄/NC-III, where I, II, and III represent that the mass ratios of NC in C₃N₄/NC photocatalyst are 0.05, 0.075, 0.10 wt %, respectively.

Characterization

XRD patterns were collected by a BRUKER AXS GMBH (D8 ADVANCE) machine with Cu Kα radiation at the angle range of 10-90° (2θ). TEM images were recorded on a JEOL JEM-2100 transmission electron microscope (acceleration voltage of 200 kV). The UV-visible diffuse reflectance spectra were measured on an ultraviolet-visible spectrophotometer (UV 2600, Shimadzu Co.). Nitrogen adsorption and desorption measurements were carried out on an Autosorb iQ instrument, the surface areas were calculated by the Brunauer-Emmett-Teller (BET) method. Raman spectra were recorded on a Raman microscope (LABRAM-HR, JY Co.). XPS measurements were performed on a Kratos AXIS Ultra DLD spectrometer with a monochromatic Alka X-ray source. Thermogravimetric differential scanning calorimetry (TG-DSC) was performed on a NETZSCH STA449F3 (Germany) instrument. Fourier transform infrared spectra (FTIR) were recorded on Thermo Scientific spectrometer (Nicolet iS-5) in the frequency range of 4000 cm⁻¹-450 cm⁻¹. Photoluminescence (PL) spectra were collected on an Edinburgh spectrofluorometer (FLS980).

Electrochemical measurements

The transient photocurrents (I-t), and electrochemical impedance spectroscopy (EIS) measurements of as-prepared samples were conducted on a CHI660E electrochemical workstation with a three-electrode system, where a sample-coated fluoride-tin oxide (FTO) glass was used as the working electrode, a saturated calomel electrode (SCE) and a Pt wire were acted as the reference electrode and counter electrode, respectively. The solution of 0.2 M Na₂SO₄ purged with nitrogen was the electrolyte. A 300 W Xenon lamp with a 400 nm cutoff filter was chosen to be a light source. The working electrode was fabricated as following procedures: 5 mg of the photocatalyst was dispersed in 1 ml ethanol solution containing 20 μ l Nafion solution (5%) with constant sonication for 30 min, and then it was spin-coated on the FTO substrate (10 mm × 1.5 mm) and dried at 150 °C for 40 min.

Photocatalytic H₂ evolution measurements

The photocatalytic experiment of H_2 evolution was carried in an online evacuation system (Perfectlight Labsolar-6A system), A 300 W Xe lamp (CEL-HX300) with a 400 nm cutoff filter was used as light source. Briefly, 10 mg photocatalysts dispersed in an 80 mL aqueous solution containing 10 vol % triethanolamine (TEOA) as the electron donor. 1 % Pt nanoparticles were deposited on the surface of as-synthesized catalysts via an in-situ photochemical method using K_2PtCl_6 as a precursor. Before irradiation, the suspension was degassed for 30 min to thoroughly remove the dissolved air in electrolyte. The experimental temperature was controlled at 6 °C by adopting a liquid trap system with water circulation. The evolved gases

were quantitatively analyzed every one hour by the gas chromatography (FULI 979011) equipped with a TCD and 5 Å molecular sieve column.

The external quantum efficiency (EQE) calculation

EQE has been determined using the follow equation:

 $EQE = \frac{the number of reacted electrons}{the number of incident photons} \times 100\%$

Where the number of reacted electrons can be used for the molecule of H_2 evolution, and the number of incident photons is the photons number reaching the surface of catalysts. The H_2 generation rate was measured in the same reaction system as predicted in the experimental section. In addition, photocatalysts were irradiated with monochromatic light generated by equipping with a bandpass filter (400 nm). The numbers of photons were obtained according to the follow equation:

$$N = \frac{E\lambda}{hc}$$

Where E, λ , h and c are the light intensity, wavelength, Planck constant and velocity of light, respectively.

The calculation process of C₃N₄/NC:

$$N = \frac{E\lambda}{hc} = \frac{40.5 \times 10^{-3} \times 3600 \times 400 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^8} = 2.93 \times 10^{20}$$

$$EQE = \frac{the number of reacted electrons}{the number of incident photons} \times 100\%$$

$$= \frac{2 \times the number of evolved H_2 molecules}{N} \times 100\%$$

$$= \frac{2 \times 6.02 \times 10^{23} \times 8.637 \times 16.53 \times 10^{-6}}{2.93 \times 10^{20}} \times 100\% = 6.79\%$$

Fig. S1 TEM images of photocatalysts. (a) bulk C_3N_4 ; (b) C_3N_4/NC ; (c) C_3N_4/NC -I; (d) C_3N_4/NC -III. C_3N_4/NC , C_3N_4/NC -I, and C_3N_4/NC -III were prepared with the NC mass ratio in C_3N_4/NC of 0.05%, 0.075%, and 0.10%, respectively. NC was marked with yellow line.

Fig. S2 N₂ adsorption-desorption isotherms and pore size distribution plots (inset). (a) bulk C_3N_4 ; (b) C_3N_4 ; (c) C_3N_4/NC -I; (d) C_3N_4/NC -III. C_3N_4/NC -I and C_3N_4/NC -III were prepared with the NC mass ratio in C_3N_4/NC of 0.05% and 0.10%, respectively.

Fig. S3 (a-c) Mott-Schottky measurements of C_3N_4 , NC, and C_3N_4/NC , respectively; (d) Light absorption and E_g spectra (the insert plot) of C_3N_4/NC ; (e) Band structure of C_3N_4/NC .

In Fig S3 a-c, the E_{fb} of C_3N_4 , NC, and C_3N_4/NC are -1.4, 0.57, and -1.33 V versus the normal hydrogen electrode (vs. NHE), respectively. Generally, the conduction band (CB) position is 0.2 eV higher than the flat-band potential (E_{fb}) for n-type semiconductor. So, the (CB) positions of C_3N_4 , NC, and C_3N_4/NC are -1.6, 0.77, and -1.53 eV, respectively. Based on the bandgaps and CB positions (Fig. 4a, b, and Fig. S3a-d), VB positions of C_3N_4 , NC, C_3N_4/NC are 1.42, 3.11, and 1.45 eV, respectively. These results not only are consistent with those in Fig. 4d, but also prove that the strong interaction between C_3N_4 and NC leads to the change of CB/VB levels.

Fig. S4 The mechanism of holes oxidation TEOA reaction.

The reaction mechanism including the H_2O reduction and TEOA oxidation reaction was added. The oxidation reaction route is pretty complicated, undergoing decarbonization and denitrification reactions. ^{S1}

Fig. S5 Online photocatalytic test system.

•

Fig. S6 The photocatalytic rate over C_3N_4/NC measured in different sacrificial reagents (TEOA, lactic acid, and methanol).

Fig. S7 XPS spectra of C_3N_4/NC before and after photocatalytic H_2 evolution reaction. (a) C 1s; (b) N 1s.

Fig. S8 The EIS comparison of C_3N_4 and C_3N_4/NC . R_{ct} is the equivalent Randle circuit composed of the interfacial charge transfer resistance at the electrode/electrolyte interface; R_s is the electrolyte solution resistance; CPE is the constant phase element.

Sample	C-C	N-C=N	-COOH	C-N=C	N-(C) ₃	C-N-H
C_3N_4	31.5	59.40	0	67.01	18.81	0
C ₃ N ₄ /NC	20.03	65.30	14.67	55.65	30.19	14.16

Table S1 Percentage of various atomic bonds obtained from XPS C 1s and N 1s spectra.

Photocatalyst	Co-catalyst	Photocatalyst (mg) Reaction solvent (ml)	H ₂ evolution rate	Ref
g-C ₃ N ₄ /NC	0.5 wt% Pt	10 mg 20 ml	23 µmol h ⁻¹ g ⁻¹	S2
ND@ g-C ₃ N ₄	1.0 wt% Pt	$\frac{50 mg}{100 mg}$	59.1 μmol h ⁻¹	S3
N-doped graphitic carbon- incorporated g- C ₃ N ₄	3.0 wt% Pt	$\frac{50 mg}{100 ml}$	64 μmol h ⁻¹ g ⁻¹	S4
UCN/CQDs	0.2 wt% Pt	$\frac{50 mg}{100 ml}$	88.1 μmol h ⁻¹	S5
CNNS/CQDs	3.0 wt% Pt	50 mg 100 ml	116.1 µmol h ⁻¹	S6
Amorphous carbon/g-C ₃ N ₄	1.0 wt% Pt	50 mg 80 ml	212.8 µmol h ⁻¹ g ⁻¹	S7
CNNS/CQDs	/	$\frac{10 mg}{10 ml}$	219.5 µmol h ⁻¹ g ⁻¹	S8
CN/N-C/Pt	3.0 wt% Pt	$\frac{50 mg}{50 ml}$	685 µmol h ⁻¹ g ⁻¹	S9
C ₃ N ₄ /NC	1.0 wt% Pt	10 mg 80 ml	3060 µmol h ⁻¹ g ⁻¹	This work

Table S2 Comparison of H_2 production for carbon modified C_3N_4 .

Photocatalyst	Co-catalyst	Photocatalys ^t (mg) Reaction solvent (ml)	H ₂ evolution rate (μmol h ⁻¹ g ⁻¹)	Ref
NiS/g-C ₃ N ₄	NiS	$\frac{50 mg}{80 ml}$	244	S10
MoS ₂ /g-C ₃ N ₄	MoS ₂	$\frac{50 mg}{250 ml}$	1155	S11
MoS _x /g-C ₃ N ₄	MoS _x	$\frac{10mg}{100ml}$	1586	S12
g-C ₃ N ₄ /NiS	NiS	$\frac{50 mg}{80 ml}$	593.6	S13
NiS ₂ /g-C ₃ N ₄	NiS ₂	$\frac{50 mg}{80 ml}$	116.34	S14
g-C ₃ N ₄ /Ni/NiS	NiS	$\frac{50mg}{100ml}$	515	S15
C ₃ N ₄ /NC/Pt	Pt	$\frac{10 mg}{80 ml}$	3060	This work

Table S3 Comparison of H_2 production for NiS or MoS_X modified C_3N_4 .

References

- S1 M. Ou, J. Li, Y. Chen, S. Wan, S. Zhao, J. Wang, Y. Wu, C. Ye and Y. Chen, *Chem. Engin. J.*, 2021, 424, 130170.
- S2 X. Hou, L. Cui, H. Du, L. Gu, Z. Li and Y. Yuan, Appl. Catal. B: Environ., 2020, 278, 119253.
- S3 L. X. Su, Q.-Z. Huang, Q. Lou, Z. Y. Liu, J. L. Sun, Z. T. Zhang, S. R. Qin, X. Li, J. H. Zang, L. Dong and C. X. Shan, *Carbon*, 2018, **139**, 164-171.
- S4 Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang and J. Shi, Carbon, 2016, 99, 111-117.
- S5 Q. Liu, T. Chen, Y. Guo, Z. Zhang and X. Fang, Appl. Catal. B: Environ., 2016, 193, 248-258.
- S6 K. Li, F. Y. Su and W. D. Zhang, Appl. Surf. Sci., 2016, 375, 110-117.
- S7 Q. Xu, B. Cheng, J. Yu and G. Liu, Carbon, 2017, 118, 241-249.
- S8 X. Xia, N. Deng, G. Cui, J. Xie, X. Shi, Y. Zhao, Q. Wang, W. Wang and B. Tang, *Chem. Commun.*, 2015, **51**, 10899-10902.
- S9 J. Wang, Q. Zhou, Y. Shen, X. Chen, S. Liu and Y. Zhang, Langmuir, 2019, 35, 12366-12373.
- S10 M. Wang, J. Cheng, X. Wang, X. Hong, J. Fan and H. Yu, Chinese. J. Catal., 2021, 42, 37-45.
- S11 Y. J. Yuan, Z. Shen, S. Wu, Y. Su, L. Pei, Z. Ji, M. Ding, W. Bai, Y. Chen, Z. Yu and Z. Zou, *Appl. Catal. B: Environ.*, 2019, 246, 120-128.
- S12 X. Li, B. Wang, X. Shu, D. Wang, G. Xu, X. Zhang, J. Lv and Y. Wu, RSC Adv., 2019, 9, 15900-15909.
- S13 K. He, J. Xie, M. Li and X. Li, Appl. Surf. Sci., 2018, 430, 208-217.
- S14 F. Chen, H. Yang, X. Wang and H. Yu, Chinese. J. Catal., 2017, 38, 296-304.
- S15 J. Wen, J. Xie, H. Zhang, A. Zhang, Y. Liu, X. Chen and X. Li, ACS Appl. Mater. Interfaces, 2017,

9, 14031-14042.