Supproting Information

Designed Nanostructures created via Physicochemical Switching of the Growth Mode between Single Crystal and Mesocrystal

Sayako Kanazawa,^a Yuya Oaki,^a Hiroaki Imai^{a*}

^aDepartment of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan *hiroaki@applc.keio.ac.jp

Solution	Stirring	Position	Width(nm)	Length(nm)	Figure
SBF1.0	w/o	upper part	~300	>1 µm	Fig. 2b
SBF1.0	w/o	elementary part	~100	>1 µm	Fig. 2c
SBF2.0	w/o	upper part	~300	>1 µm	Fig. S3b
SBF2.0	w/o	elementary part	~100	>1 µm	Fig. S3c
SBF1.0	w/	upper part	80	500	Fig. 2e
SBF1.0	w/	imtermediate part	40	300	Fig. 2f
SBF1.0	w/	elementary part	30	100	Fig. 2g
SBF2.0	w/	upper part	50	200	Fig. S5c
SBF2.0	w/	imtermediate part	40	100	Fig. S5d
SBF2.0	w/	elementary part	30	70	Fig. S5e

Table S1 The width and length of the grains in the films produced under various consitions.

Fig. S1 SEM images of the cross-sectional view of the original PVA sheet (a-1, a-2) and the seed layer after subsequent growth for 6 h in s-SBF3.75 at $[F^-] = 2.25$ mmol dm⁻³ (b-1, b-2). Typical XRD patterns (c) of the PVA sheet (i) and the seed layer (ii).

Fig. S2 A typical TEM image (a) and SAED pattern (b) of an FIB-cut plate obtained from the film after subsequent growth without stirring in s-SBF1.0 at $[F^-] = 1.50$ mmol dm⁻³ for 24 h on the seed layer.

Fig. S3 SEM images (a–c) of the cross-sectional view and a typical XRD pattern (d) of the films after subsequent growth without stirring in s-SBF2.0 at $[F^-] = 1.50$ mmol dm⁻³ for 24 h on the seed layer.

Fig. S4 A typical TEM image (a) and fast Fourier transform (FFT) pattern (b) of grains obtained by fracturing the film after subsequent growth with stirring in s-SBF1.0 at $[F^-] = 1.50$ mmol dm⁻³ for 24 h on the seed layer.

Fig. S5 SEM images (a, c–d) of the cross-sectional view and a typical XRD pattern (b) of the films after subsequent growth with stirring in s-SBF2.0 at $[F^-] = 1.50 \text{ mmol dm}^{-3}$ for 24 h (a and b) on the seed layer.

Fig. S6 SEM images (a-f) of the cross-sectional view of the films after subsequent growth at $[F^-] = 1.50$ mmol dm⁻³ for 1–24 h on the seed layer. (a) $[Ca^{2+}] = 0.74$ mmol dm⁻³ and $[PO_4^{3-}] = 0.062$ mmol dm⁻³, (b) $[Ca^{2+}] = 0.703$ mmol dm⁻³ and $[PO_4^{3-}] = 0.279$ mmol dm⁻³, (c) $[Ca^{2+}] = 1.361$ mmol dm⁻³ and $[PO_4^{3-}] = 0.167$ mmol dm⁻³, (d) $[Ca^{2+}] = 1.159$ mmol dm⁻³ and $[PO_4^{3-}] = 0.578$ mmol dm⁻³, (e) $[Ca^{2+}] = 2.179$ mmol dm⁻³ and $[PO_4^{3-}] = 1.085$ mmol dm⁻³, and (f) $[Ca^{2+}] = 2.663$ mmol dm⁻³ and $[PO_4^{3-}] = 1.020$ mmol dm⁻³. (g) The variation in the width and length of FA nanorods or nanograins with a change in the product of calcium and phosphate ion concentrations.