Supporting Information

Reconfigurable carrier type and photodetection of MoTe₂ of various thickness by deep ultraviolet light illumination

Byung Min Ko^{1#}, Muhammad Farooq Khan^{2#}, Ghulam Dastgeer¹, Gyu Nam Han¹, Muhammad Asghar Khan¹ and Jonghwa Eom^{1*}

¹Department of Physics & Astronomy and Graphene Research Institute, Sejong University,

Seoul 05006, Korea

²Department of Electrical Engineering, Sejong University, Seoul 05006, Korea

[#]These authors contributed equally to this work

*Corresponding author: eom@sejong.ac.kr

Figure S1. (a) Electron and hole current values at $V_g = 60$ V with different DUV+N₂ treatment times. **(b)** Electron and hole mobility at different DUV+N₂ treatment times. **(c)** Electron and hole current values at $V_g = 60$ V with different DUV+O₂ treatment times. **(d)** Electron and hole mobility at different DUV+O₂ treatment times.

Figure S2. The AFM images and thickness profiles of different MoTe2 flakes (a) AFM image of 3.1-nm-thick flake. (b) Height profile of 3.1 nm. (c) AFM image of 14-nm-thick flake. (d) Height profile of 14 nm. (e) AFM image of 30-nm-thick flake. (f) Height profile of 30 nm.

Figure S3. (a) Transfer curves of another pristine p-MoTe₂, n-MoTe₂ after DUV+N₂ treatment and p-MoTe₂ after DUV+O₂ treatment. (b) Zoom-in view to see the current value at $V_g = 0$ V. (c) photocurrent generation of pristine p-MoTe₂, n-MoTe₂ after DUV+N₂ treatment and p-MoTe₂ after DUV+O₂ treatment.