Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Information

KCl-assisted activation: Moringa oleifera branch-derived porous carbon for

high performance supercapacitor

Yongxiang Zhang^{a,b}, Peifeng Yu^a, Mingtao Zheng^{a,b}, Yong Xiao^{a,b}, Hang Hu^{a,b}, Yeru

Liang^{a,b}, Yingliang Liu^{a,b*}, Hanwu Dong^{a,b*}

^a Key Laboratory for Biobased Materials and Energy of Ministry of Education,

College of Materials and Energy, South China Agricultural University, Guangzhou,

510642, Guangdong, China

^b Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China

E-mail address: hanwu@scau.edu.cn; tliuyl@scau.edu.cn.

Supporting Information Contents:

Number of pages: 16

Number of figures: 11

Number of tables: 10

Figure S1. (a) N_2 adsorption-desorption isotherms, (b) DFT pore size distribution curves of PCM-0.5 (KOH/NaCl), PCM-1 (KOH/NaCl) and PCM-2 (KOH/NaCl). (c) N_2 adsorption-desorption isotherms, (d) DFT pore size distribution curves of PCM-0.5 (KOH/LiCl), PCM-1 (KOH/LiCl) and PCM-2 (KOH/LiCl).

Figure S2. Comparison of (a) CV curves at 200 mV s⁻¹ and (b) GCD curves at 0.5 A g^{-1} for PCM-2, PCM-3K and PCM-3Cl in a three-electrode system by using 6.0 M KOH aqueous solution as the electrolyte.

Figure S3. CV and GCD curves of (a, b) PCM-3K and (c, d) PCM-3Cl in a threeelectrode system by using 6.0 M KOH aqueous solution as the electrolyte.

Figure S4. CV and GCD curves of (a, b) PCM-2, (c, d) PCM-3K and (e, f) PCM-3Cl coin-type symmetrical supercapacitors by using 6 M KOH aqueous solution as electrolyte.

Figure S5. (a) Capacitance comparison of PCM-2, PCM-3K and PCM-3Cl at various current densities in a coin-type supercapacitor and (b) Ragone plots of sample in coin-type supercapacitors by using 6.0 M KOH aqueous solution as the electrolyte.

Figure S6. CV and GCD curves of (a, b) PCM-3K and (c, d) PCM-3Cl coin-type symmetrical supercapacitors by using 1.0 M Na₂SO₄ aqueous solution as electrolyte.

Figure S7. (a) The size dimension of PCMs electrode for the three-electrode system (1x1 cm²), (b) The size dimension of the PCMs electrode for the two-electrode symmetrical supercapacitors (0.36π cm²).

Figure S8. (a) The PCM-2-based electrodes loaded with different masses (the loading masses from left to right are 6.8, 9.31, 11.45 and 14.18 mg cm⁻² (including active materials, carbon black, PTFE and the mass ratio is 8:1:1), respectively. (b) The gravimetric capacitance of PCM-2-base electrodes loaded with different masses.

Figure S9. CV and GCD curves of PCM-2 electrodes loaded with different masses in a three-electrode system by using 6.0 M KOH aqueous solution as the electrolyte. (a, b) 6.8, (c, d) 9.31, (e, f) 11.45 and (g, h) 14.18 mg cm⁻².

Figure S10. XPS spectra of the as-prepared PCM-0.5, PCM-1, PCM-2, PCM-3Cl and

PCM-3K.

Figure S11. High-resolution C 1s and O 1s XPS spectra of (a, b) PCM-0.5, (c, d) PCM-1, (e, f) PCM-2, (g, h) PCM-3Cl and (i, j) PCM-3K.

Sample	^a S _{BET} (m ² g ⁻¹)	$^{b}S_{mic}$ (m ² g ⁻¹)	$^{c}V_{t}$ (cm ³ g ⁻¹)	$^{d}V_{mic}$ (cm ³ g ⁻¹)	°Biomass yields (%)
PCM-3Cl	927	861	0.38	0.33	17.5
PCM-0.5	2314	2166	0.94	0.84	15.6
PCM-1	2703	2546	1.15	1.03	14.6
PCM-2	3470	2786	1.69	1.16	12.5
PCM-3K	3389	2481	1.67	1.03	9.8

Table S1. Summary of textural characteristics of as-prepared samples (KOH/KCl).

Table S2. Summary of textural characteristics of as-prepared samples (KOH/NaCl).

Sample	$^{a}S_{BET}$ (m ² g ⁻¹)	$^{\mathrm{b}}\mathrm{S}_{\mathrm{mic}}$ (m ² g ⁻¹)	$^{c}V_{t}$ (cm ³ g ⁻¹)	$^{\mathrm{d}}\mathrm{V}_{\mathrm{mic}}$ (cm ³ g ⁻¹)
PCM-0.5 (KOH/NaCl)	1759	1639	0.73	0.63
PCM-1 (KOH/NaCl)	2219	2069	0.95	0.81
PCM-2 (KOH/NaCl)	2697	2477	1.19	1.0

Table S3. Summary of textural characteristics of as-prepared samples (KOH/LiCl).

Sample	$^{a}S_{BET}$ (m ² g ⁻¹)	$^{\mathrm{b}}\mathrm{S}_{\mathrm{mic}}$ (m ² g ⁻¹)	$^{c}V_{t}$ (cm ³ g ⁻¹)	$^{\rm d}\mathrm{V}_{\rm mic}$ (cm ³ g ⁻¹)
PCM-0.5 (KOH/LiCl)	1325	1228	0.55	0.47
PCM-1 (KOH/LiCl)	1767	1641	0.75	0.64
PCM-2 (KOH/LiCl)	2169	1741	0.94	0.69

(a) Specific surface area.

(b) Micropore surface area.

(c) Total pore volume.

(d) Micropore volume.

(e) The yield of the porous carbon based on raw materials.

Carbon precursors	S_{BET} (m ² g ⁻¹)	S_{mico} (m ² g ⁻¹)	T (°C)	Activation agent	Ref.
Soybean milk powder	1208	987	700	KOH/CaCO ₃	[1]
Mung bean husks	1278	1057	700	КОН	[2]
Tannic acid	1570	1333	800	NaCl/ZnCl ₂	[3]
Ripe plane tree fluff	1416	995	800	KOH/FeNO ₃	[4]
Petroleum asphalt	2227	1741	900	KOH/NaCl/KCl	[5]
Rice straw	2646	1416	800	КОН	[6]
Wild jujube pit powder	2438	2170	800	КОН	[7]
Eulaliopsis binata	2273	1045	850	КОН	[8]
Puffed rice	3326	2193	850	КОН	[9]
Miscellaneous wood fibers	1807	1743.5	800	КОН	[10]
Wax gourd	2544	1747	800	КОН	[11]
Camellia oleifera	1726	858	800	КОН	[12]
Rhus typhina	2676	2354	800	КОН	[13]
Stachyurus Chinensis Franch	1994	647.6	800	КОН	[14]
Corncob sponge	1909	1209	850	КОН	[15]
Fallen leaves	1409	791	700	KOH/K ₂ CO ₃	[16]
D- (+)-glucose	1500	1440	700	KOH/ZnCl ₂	[17]
Moringa oleifera branch	3470	2786	800	KOH/KCI	This work

Table S4. The specific surface areas and preparation conditions of porous carbon

 derived from different precursors reported in the literatures.

Sample	C_{total} (%)	N _{total} (%)	O _{total} (%)
PCM-0.5	94.1	0.85	5.05
PCM-1	92.94	1.12	5.94
PCM-2	84.18	0.85	14.97
PCM-3Cl	92.43	2.03	5.54
PCM-3K	88.67	1.37	9.97

Table S5. The detailed element content of C, N, and O.

Table S6. Electrochemical performance of Moringa oleifera branch-derived porous

carbon in three-electrode system (6 mol L^{-1} KOH and current density of 0.5 A g⁻¹).

Sample	Active material (mg)	Area (cm ²)	Gravimetric capacitance (F g-1)	Areal capacitance (mF cm ⁻²)
PCM-2	3.43	1	421	1444
PCM-3K	3.48	1	340	1183
PCM-3Cl	3.42	1	189	645

 Table S7. Electrochemical performance of Moringa oleifera branch-derived porous

Sample	Active material	Area (cm ²)	Gravimetric capacitance	Areal capacitance (mF cm ⁻²)
	(mg)		(F g-1)	
PCM-2	3.45//3.47	0.36π	343.8	1052
PCM-3K	3.04//3.11	0.36π	297.8	808

Table S8. Electrochemical performance of Moringa oleifera branch-derived porous

carbon in two-electrode system (1 mol L^{-1} Na ₂ SO ₄ and current den	nsity o	of 0.5 A g	$(^{-1}).$
--	---------	------------	------------

Sample	Active material (mg)	Area (cm ²)	Gravimetric capacitance (F g-1)	Areal capacitance (mF cm ⁻²)
PCM-2	3.24//3.29	0.36π	293.7	848
PCM-3K	3.45//3.58	0.36π	195.5	607.9

Carbon precursors	Capacita	nce (F g ⁻¹)	Current density	Ref.
	Ref	This work	$(A g^{-1})$	
Reed membranes	353.6	421	0.5	[18]
Silicone resin	322	421	0.5	[19]
Waste bones	302	421	0.5	[20]
Sucrose	302	380	1	[21]
Nanoporous graphene	204	316	10	[22]
D (+)-glucosamine	388	421	0.5	[23]
Rose	208	421	0.5	[24]
Bagasse	320	421	0.5	[25]
Cotton stalk	282	421	0.5	[26]
Polyacrylonitrile	331	421	0.5	[27]
Sewage sludge	379	421	0.5	[28]
Cigarette butt	330.1	421	0.5	[29]
Tobacco rods	286.6	421	0.5	[30]
Black locust seed dregs	333	380	1	[31]
Celery	245	421	0.5	[32]
Perilla frutescens leaves	270	421	0.5	[33]
Willow catkins	231	316	10	[34]
Moringa oleifera stem	283	421	0.5	[35]

Table S9. The comparison of electrochemical performance between Moringa oleifera branch and carbon materials electrodes reported in 6 M KOH electrolyte system.

Carbon precursors	Capacitance (F g ⁻¹)	Current density (A g ⁻¹)	Ref.
N, S-Doped porous carbon	204	0.5	[36]
1D carbon nanobelts //MnO ₂	265	0.2	[37]
3D Porous carbon nanosheet	230	0.5	[38]
Polyacrylonitrile based porous carbon	218	0.5	[39]
Graphene-like porous carbon	255	0.5	[40]
Hierarchical porous carbon	211	0.5	[41]
Three-dimensional porous carbon	179	0.5	[42]
Nitrogen-doped porous carbon	134	1	[43]
Microporous active carbon	138	1	[44]
Honeycomb-like porous carbon	212	0.5	[45]
Hierarchical porous carbon	186	0.5	[46]
Hierarchical porous carbon	191	0.5	[47]
Carbon nanosheets	272	1	[35]
N, O-enriched porous carbons	157	0.2	[48]
Egg-Box-Like porous carbon	181	0.2	[49]
N/O co-doped carbon	328	0.2	[50]
Porous carbon	206	0.5	[51]
PCM-2	293.7	0.5	This work

Table S10. The comparison of electrochemical performance for representativecarbons in 1 M Na_2SO_4 electrolyte system.

References:

- 1. M. Chen, D. Yu, X. Zheng and X. Dong, Journal of Energy Storage, 2019, 21, 105-112.
- 2. M. Song, Y. Zhou, X. Ren, J. Wan, Y. Du, G. Wu and F. Ma, J Colloid Interface Sci, 2019, 535, 276-286.
- G. A. Tiruye, D. Muñoz-Torrero, T. Berthold, J. Palma, M. Antonietti, N. Fechler and R. Marcilla, *Journal of Materials Chemistry A*, 2017, 5, 16263-16272.
- 4. Y. Yao, Y. Zhang, L. Li, S. Wang, S. Dou and X. Liu, ACS Appl Mater Interfaces, 2017, 9, 34944-34953.
- 5. L. Pan, X. Li, Y. Wang, J. Liu, W. Tian, H. Ning and M. Wu, Applied Surface Science, 2018, 444, 739-746.
- 6. L. Zhu, F. Shen, R. L. Smith, L. Yan, L. Li and X. Qi, Chemical Engineering Journal, 2017, 316, 770-777.
- 7. K. Sun, S. Yu, Z. Hu, Z. Li, G. Lei, Q. Xiao and Y. Ding, *Electrochimica Acta*, 2017, 231, 417-428.
- 8. B. Liu, H. Chen, Y. Gao and H. Li, *Electrochimica Acta*, 2016, 189, 93-100.
- 9. J. Hou, K. Jiang, M. Tahir, X. Wu, F. Idrees, M. Shen and C. Cao, Journal of Power Sources, 2017, 371, 148-155.
- 10. F. Liu, Y. Gao, C. Zhang, H. Huang, C. Yan, X. Chu, Z. Xu, Z. Wang, H. Zhang, X. Xiao and W. Yang, J Colloid Interface Sci, 2019, 548, 322-332.
- 11. X. Bo, K. Xiang, Y. Zhang, Y. Shen, S. Chen, Y. Wang, M. Xie and X. Guo, *Journal of Energy Chemistry*, 2019, **39**, 1-7.
- 12. D. Yu, Y. Ma, M. Chen and X. Dong, J Colloid Interface Sci, 2019, 537, 569-578.
- 13. X. Wei, J.-S. Wei, Y. Li and H. Zou, Journal of Power Sources, 2019, 414, 13-23.
- 14. Y. Yao, Z. Xiao, P. Liu, S. Zhang, Y. Niu, H. Wu, S. Liu, W. Tu, Q. Luo, M. A. Z. G. Sial, S. Zeng, Q. Zhang, J. Zou, X. Zeng and W. Zhang, *Carbon*, 2019, **155**, 674-685.
- 15. L. Peng, Y. Liang, H. Dong, H. Hu, X. Zhao, Y. Cai, Y. Xiao, Y. Liu and M. Zheng, *Journal of Power Sources*, 2018, 377, 151-160.
- 16. Y.-T. Li, Y.-T. Pi, L.-M. Lu, S.-H. Xu and T.-Z. Ren, Journal of Power Sources, 2015, 299, 519-528.
- 17. M. Härmas, T. Thomberg, H. Kurig, T. Romann, A. Jänes and E. Lust, *Journal of Power Sources*, 2016, **326**, 624-634.
- 18. C.-L. Ban, Z. Xu, D. Wang, Z. Liu and H. Zhang, ACS Sustainable Chemistry & Engineering, 2019, 7, 10742-10750.
- 19. J. Yang, J. Hu, M. Zhu, Y. Zhao, H. Chen and F. Pan, Journal of Power Sources, 2017, 365, 362-371.
- 20. L. Niu, C. Shen, L. Yan, J. Zhang, Y. Lin, Y. Gong, C. Li, C. Q. Sun and S. Xu, *J Colloid Interface Sci*, 2019, **547**, 92-101.
- 21. J. Zhou, M. Wang and X. Li, Applied Surface Science, 2018, 462, 444-452.
- 22. E. Senthilkumar, V. Sivasankar, B. R. Kohakade, K. Thileepkumar, M. Ramya, G. Sivagaami Sundari, S. Raghu and R. A. Kalaivani, *Applied Surface Science*, 2018, **460**, 17-24.
- 23. Y. Qing, Y. Jiang, H. Lin, L. Wang, A. Liu, Y. Cao, R. Sheng, Y. Guo, C. Fan, S. Zhang, D. Jia and Z. Fan, *Journal of Materials Chemistry A*, 2019, **7**, 6021-6027.
- 24. C. Zhao, Y. Huang, C. Zhao, X. Shao and Z. Zhu, *Electrochimica Acta*, 2018, 291, 287-296.
- 25. H. Feng, H. Hu, H. Dong, Y. Xiao, Y. Cai, B. Lei, Y. Liu and M. Zheng, *Journal of Power Sources*, 2016, **302**, 164-173.
- 26. Z. Li, S. Gao, H. Mi, C. Lei, C. Ji, Z. Xie, C. Yu and J. Qiu, Carbon, 2019, 149, 273-280.
- 27. Y. Liu, N. Liu, L. Yu, X. Jiang and X. Yan, Chemical Engineering Journal, 2019, 362, 600-608.
- 28. H. Feng, M. Zheng, H. Dong, Y. Xiao, H. Hu, Z. Sun, C. Long, Y. Cai, X. Zhao, H. Zhang, B. Lei and Y. Liu, *Journal of Materials Chemistry A*, 2015, **3**, 15225-15234.
- 29. Q. Meng, W. Chen, L. Wu, J. Lei, X. Liu, W. Zhu and T. Duan, Energy, 2019, 189, 116241.
- 30. Y.-Q. Zhao, M. Lu, P.-Y. Tao, Y.-J. Zhang, X.-T. Gong, Z. Yang, G.-Q. Zhang and H.-L. Li, *Journal of Power Sources*, 2016, **307**, 391-400.

- 31. L. Hou, Z. Hu, X. Wang, L. Qiang, Y. Zhou, L. Lv and S. Li, J Colloid Interface Sci, 2019, 540, 88-96.
- 32. J. He, D. Zhang, M. Han, X. Liu, Y. Wang, Y. Li, X. Zhang, K. Wang, H. Feng and Y. Wang, *Journal of Energy Storage*, 2019, **21**, 94-104.
- 33. B. Liu, Y. Liu, H. Chen, M. Yang and H. Li, Journal of Power Sources, 2017, 341, 309-317.
- K. Wang, N. Zhao, S. Lei, R. Yan, X. Tian, J. Wang, Y. Song, D. Xu, Q. Guo and L. Liu, *Electrochimica Acta*, 2015, 166, 1-11.
- 35. Y. Cai, Y. Luo, H. Dong, X. Zhao, Y. Xiao, Y. Liang, H. Hu, Y. Liu and M. Zheng, *Journal of Power Sources*, 2017, **353**, 260-269.
- 36. D. Wu, J. Cheng, T. Wang, P. Liu, L. Yang and D. Jia, ACS Sustainable Chemistry & Engineering, 2019, 7, 12138-12147.
- 37. T. Ouyang, K. Cheng, F. Yang, L. Zhou, K. Zhu, K. Ye, G. Wang and D. Cao, *Journal of Materials Chemistry A*, 2017, **5**, 14551-14561.
- Y. Li, S. Liu, Y. Liang, Y. Xiao, H. Dong, M. Zheng, H. Hu and Y. Liu, ACS Sustainable Chemistry & Engineering, 2019, 7, 13827-13835.
- 39. Y. Li, Y. Liang, H. Hu, H. Dong, M. Zheng, Y. Xiao and Y. Liu, Carbon, 2019, 152, 120-127.
- 40. G. Yuan, H. Li, H. Hu, Y. Xie, Y. Xiao, H. Dong, Y. Liang, Y. Liu and M. Zheng, *Electrochimica Acta*, 2019, **326**, 134974.
- 41. J. Huang, L. Chen, H. Dong, Y. Zeng, H. Hu, M. Zheng, Y. Liu, Y. Xiao and Y. Liang, *Electrochimica Acta*, 2017, **258**, 504-511.
- 42. W. Zhao, Y. Zhu, L. Zhang, Y. Xie and X. Ye, Journal of Alloys and Compounds, 2019, 787, 1-8.
- 43. C. Long, J. Zhuang, Y. Xiao, M. Zheng, H. Hu, H. Dong, B. Lei, H. Zhang and Y. Liu, *Journal of Power Sources*, 2016, **310**, 145-153.
- 44. X. Song, X. Ma, Y. Li, L. Ding and R. Jiang, Applied Surface Science, 2019, 487, 189-197.
- 45. T. Guan, J. Zhao, G. Zhang, J. Wang, D. Zhang and K. Li, ACS Sustainable Chemistry & Engineering, 2018, 7, 2116-2126.
- 46. J. Huang, Y. Liang, H. Hu, S. Liu, Y. Cai, H. Dong, M. Zheng, Y. Xiao and Y. Liu, *Journal of Materials Chemistry A*, 2017, **5**, 24775-24781.
- Y. Li, B. Mou, Y. Liang, H. Dong, M. Zheng, Y. Xiao and Y. Liu, ACS Sustainable Chemistry & Engineering, 2019, 7, 15259-15266.
- Y. Cheng, B. Li, Y. Huang, Y. Wang, J. Chen, D. Wei, Y. Feng, D. Jia and Y. Zhou, *Applied Surface Science*, 2018, 439, 712-723.
- 49. Y. Cai, Y. Luo, Y. Xiao, X. Zhao, Y. Liang, H. Hu, H. Dong, L. Sun, Y. Liu and M. Zheng, ACS Appl Mater Interfaces, 2016, 8, 33060-33071.
- 50. D. He, J. Niu, M. Dou, J. Ji, Y. Huang and F. Wang, *Electrochimica Acta*, 2017, 238, 310-318.
- 51. P. Yu, Y. Liang, H. Dong, H. Hu, S. Liu, L. Peng, M. Zheng, Y. Xiao and Y. Liu, ACS Sustainable Chemistry & Engineering, 2018, 6, 15325-15332.